
CollectiveAccess Documentation
Release 1.8

Whirl-i-Gig

Dec 13, 2020

Introduction to CollectiveAccess

1 Contents 3
1.1 What is CollectiveAccess? . 3
1.2 System Requirements . 3
1.3 Backing up a CollectiveAccess installation . 10
1.4 Installation . 11
1.5 Setup.php . 19
1.6 Introduction to Data in CollectiveAccess . 23
1.7 Profiles . 25
1.8 Primary Tables and Intrinsic Fields . 43
1.9 Metadata Elements . 71
1.10 Relationships . 103
1.11 Interstitial Data . 103
1.12 Lists & Authorities . 106
1.13 User Interfaces . 107
1.14 User Interface Administration . 107
1.15 Data Dictionary . 109
1.16 Locales . 109
1.17 Labels . 110
1.18 Configuring Providence . 110
1.19 Configuration File Syntax . 214
1.20 Introduction to Search & Browse Types . 216
1.21 Search Syntax . 216
1.22 Indexing Options . 221
1.23 Search Engines . 221
1.24 Introduction to Media Management . 222
1.25 Media Mirroring . 222
1.26 Display Template Syntax . 224
1.27 PDF Output . 237
1.28 Generating Labels . 237
1.29 Tracking current object location . 237
1.30 Workflow-based location tracking . 249
1.31 Import Mappings . 255
1.32 Basic Data Import Tutorial . 282
1.33 Running an Import . 289
1.34 WorldCat . 291
1.35 Getty Vocabularies . 291

i

1.36 Importing media embedded metadata . 291
1.37 Export Mappings . 298
1.38 OAI-PMH Provider . 307
1.39 External Export Framework . 309
1.40 User Access Control . 311
1.41 Maintenance Functions . 311
1.42 Command-line utilities . 311
1.43 Settings . 312
1.44 Expressions . 316
1.45 Glossaries . 321

ii

CollectiveAccess Documentation, Release 1.8

CollectiveAccess is open-source collections management and presentation software designed for museums, archives,
and special collections also increasingly used by libraries, corporations and non-profits. It is designed to handle large,
heterogeneous collections that have complex cataloguing requirements and require support for a variety of metadata
standards and media formats. CollectiveAccess is a collaboration between Whirl-i-Gig and partner institutions in
North America and Europe with projects in 5 continents. The software is freely available under the open source GNU
Public License, meaning it’s not only free to download and use but that users are encouraged to share and distribute
code.

Introduction to CollectiveAccess 1

CollectiveAccess Documentation, Release 1.8

2 Introduction to CollectiveAccess

CHAPTER 1

Contents

1.1 What is CollectiveAccess?

1.1.1 Who Uses CA?

1.1.2 Why Should I Use It?

1.2 System Requirements

1.2.1 What is Providence?

Providence is the core of CollectiveAccess. It includes a data modeling framework, a database, a media handling
framework capable of manipulating and converting digital images, video, audio and documents, and a web-based user
interface application for cataloguing, searching and managing your collections. If you are starting out with Collec-
tiveAccess, Providence is the first (and most important) component you need to install. All other CollectiveAccess
components are add-ons to Providence and require a functional Providence installation.

1.2.2 Getting Started

Providence is a web-based application that runs on a server. Users access the server from their own computers over
a network using standard web browser software. As with any web-based application, Providence is designed to be
accessed via the internet, enabling collaborative cataloguing of collections by widely dispersed teams. However, you
do not have to make your Providence installation accessible on the internet. It will function just as well on a local
network with no internet connectivity, or even on a single machine with no network connectivity at all. Who gets to
access your system is entirely up to you.

Before attempting an installation verify that your server meets the basic requirements for running Providence:

3

CollectiveAccess Documentation, Release 1.8

Server Require-
ments

Notes

Operating System Linux, Mac OS X 10.9+, or Windows (Server 2012+, Windows 7, 8 and 10 verified to
work).

Server Memory 4 gb of RAM minimum. If you intend to have CA handle large image files then your server
should ideally have three times the size of the largest image when uncompressed. In general
more memory is always better, and 8 gb of RAM is a good baseline assuming it is not cost
prohibitive.

Data Storage A simple formula for estimating storage requirements requires an expected number of me-
dia items to be catalogued and an average size for those media items. Once these quantities
are known an estimate can be derived using some simple arithmetic: <storage required in
mb> = (<# of media items> * <average storage requirements per media item in mb>) + (<#
of media items> * 5mb). 5mb is estimated overhead of storing derivatives (small JPEG,
TilePic pan-and-zoom version, etc.) It is recommended to double the calculated storage re-
quirements when acquiring hardware if practical. Storage requirements for your metadata
and database indices, even if your database is quite large, are usually negligible compared
to the storage required for media.

Processor Multiprocessor/multicore architectures are desirable for the improved scalability they pro-
vide, and well as the capability to speed the processing of uploaded media. Media process-
ing is often CPU-bound (as opposed to database operations which are often I/O bound) and
lends itself to multiprocessing. It is advisable to obtain a machine with at least 2 cores and,
if possible, 4+ cores.

1.2.3 Core software requirements

Providence requires three core open-source software packages be installed prior to installation. Without these packages
Providence cannot run:

Software Package Notes
Webserver Apache version 2.4 or NGINX 1.14 or later are recommended.
MYSQL Database Versions 5.5, 5.6, 5.7 and 8.0 are supported.
PHP programming
language

PHP version 7.0 or better is required. PHP 7.2 or later is strongly recommended. Note that
the CollectiveAccess, 1.7.7 is the last version to support PHP 5.6.

All of these should be available as pre-compiled packages for most Linux distributions and as installer packages for
Windows. For Macs, Brew is a highly recommended way to get all of CA’s prerequisites quickly up and running.

If setting up Apache, MySQL or PHP is daunting, you may want to consider pre-configured Apache/MySQL/PHP
environments available for Windows and Macintosh such as MAMP and XAMPP. These can greatly simplify setup
of CollectiveAccess and its’ requirements and are useful tools for experimentation and prototyping. They are not
recommended for hosting live systems, however.

1.2.4 Required and Suggested Software Packages By Distribution

CentOS 7

Some packages used by CollectiveAccess are available only from 3rd party repositories. Packages recommended here
are from the following repositories:

• Nux: http://li.nux.ro/download/nux/dextop/el7/x86_64/nux-dextop-release-0-5.el7.nux.noarch.rpm

• Remi: http://rpms.remirepo.net/enterprise/remi-release-7.rpm

4 Chapter 1. Contents

https://brew.sh/
https://www.mamp.info/
https://www.apachefriends.org/index.html
http://li.nux.ro/download/nux/dextop/el7/x86_64/nux-dextop-release-0-5.el7.nux.noarch.rpm
http://rpms.remirepo.net/enterprise/remi-release-7.rpm

CollectiveAccess Documentation, Release 1.8

• EPEL: https://dl.fedoraproject.org/pub/epel/epel-release-latest-7.noarch.rpm

Required:

• mariadb-server [Database server]

• httpd [Web server]

• redis-server [Cache server]

• php php-mcrypt php-cli php-gd php-curl php-mysqlnd php-zip php-fileinfo php-devel php-gmagick php-
opcache php-process php-xml php-mbstring php-redis [Runtime environment] (Remi, EPEL)

Suggested: - GraphicsMagick-devel [Image processing] - ghostscript-devel - ffmpeg-devel [Audio and video process-
ing] (Nux) - libreoffice [Microsoft Office file processing] (EPEL) - dcraw [RAW image format support] - mediainfo
[Media metadata extraction] - exiftool [Media metadata extraction] - xpdf [Media metadata extraction]

When installing a tool for media metadata extraction, you need only install one, although having multiple installed
will not cause issues.

Ubuntu 16.04

Some packages used by CollectiveAccess are available only from 3rd party repositories. Packages recommended here
are from the following repositories:

• ondrej/php: ppa:ondrej/php

• PECL: https://pecl.php.net

Required:

• mysql-server

• apache2

• redis-server

• php7.x libapache2-mod-php7.x php7.x-common php7.x-mbstring php7.x-xmlrpc php7.x-gd php7.x-xml
php7.x-intl php7.x-mysql php7.x-cli php7.x-mcrypt php7.x-zip php7.x-curl php7.x-posix php7.x-dev php-pear
php7.x-

• pecl.php.net/gmagick-2.0.5RC1 [pecl install channel://pecl.php.net/gmagick-2.0.5RC1]

Suggested:

• graphicsmagick libgraphicsmagick-dev [Image processing]

• ffmpeg [Audio and video processing]

• ghostscript [PDF processing]

• libreoffice [Microsoft Office file processing]

• dcraw [RAW image format support]

• mediainfo [Media metadata extraction]

• xpdf [Media metadata extraction]

• exiftool [Media metadata extraction]

1.2.5 Directories

If you are running Apache on Linux, the root of your CollectiveAccess installation will usually be located in
/var/www/html.

1.2. System Requirements 5

https://dl.fedoraproject.org/pub/epel/epel-release-latest-7.noarch.rpm
https://pecl.php.net

CollectiveAccess Documentation, Release 1.8

1.2.6 Software requirements for media processing

Depending upon the types of media you intend to handle with CA you will also need to install various supporting
software libraries and tools. None of these is absolutely required for CA to install and operate but without them
specific types of media may not be supported (as noted below).

6 Chapter 1. Contents

CollectiveAccess Documentation, Release 1.8

Software Package Media Types Notes
GraphicsMagick Images Version 1.3.16 or better is required. GraphicsMagick is the pre-

ferred option for processing image files on all platforms and is bet-
ter performing than any other option. Be sure to compile or obtain a
version of GraphicsMagick with support for the formats you need.
Support for some image formats is contingent upon other libraries
being present on your server (eg. libTiff must be present for TIFF
support]). Some less common formats, such as PSD, may require
special configuration and/or compilation.

ImageMagick Images Version 6.5 or better is required. ImageMagick can handle more
image formats than any other option but is significantly slower than
GraphicsMagick in most situations. Be sure to compile or obtain
a version of ImageMagick with support for the formats you need!
Support for some image formats is contingent upon other libraries
being present on your server (eg. libTiff must be present for TIFF
support]).

libGD Images A simple library for processing JPEG, GIF and PNG format images,
GD is a fall-back for image processing when ImageMagick is not
available. This library is typically bundled with PHP so you should
not need to install it separately. In some cases you may need to per-
form a manual install or use a package provided by your operating
system provider. In addition to supporting a limited set of image
formats, GD is typically slows than ImageMagick or GraphicsMag-
ick for many operations. If at all possible install GraphicsMagick
on your server.

ffmpeg Audio, Video Required if you want to handle video or audio media. Be sure to
compile to support the file formats and codecs you require.

Ghostscript PDF Documents Ghostscript 8.71 or better is required to generate preview images of
uploaded PDF documents. PDF uploads will still work, but without
preview images, if Ghostscript is not installed. If you require color
management (if you are dealing with color PDF documents you do),
then you must install Ghostscript 9.0 or better.

dcraw Images Required to support upload of proprietary CameraRAW formats
produced by various higher-end digital cameras. Note that that
AdobeDNG format, a newer RAW format, is supported by Graph-
icsMagick and ImageMagick.

PdfToText PDF Documents A utility to extract text from uploaded PDF files. If present CA
will use PdfToText to extract text for indexing. If PdfToText is not
installed on your server CA will not be able to search the content of
uploaded PDF documents.

PdfMiner PDF Documents A utility to extract text and text locations from uploaded PDF files.
If present CA will use PdfMiner to extract text for indexing and
locations to support highlighting of search results during PDF dis-
play. If PdfMiner is not installed on your server CA will fall back
to PdfToText for indexing and highlighting of search results will be
disabled.

MediaInfo Images, Audio,
Video, PDF Docu-
ments

A library for extraction of technical metadata from various audio
and video file formats. If present CA can use MediaInfo to extract
technical metadata, otherwise it will fall back to using various built-
in methods such as GetID3.

ExifTool Images A library for extraction of embedded metadata from many image
file formats. If present CA can use it to extract metadata for display
and import.

WkHTMLToPDF PDF Output WkHTMLToPDF is an application that can perform high quality
conversion of HTML code to PDF files. If present CollectiveAccess
can use WkHTMLToPDF to generate PDF-format labels and re-
ports. Version 0.12.1 is supported. Do not use version 0.12.2, which
has bugs that prevent valid formatting of output. If WkHTML-
ToPDF is not installed CollectiveAccess will fall back to a slower
built-in alternative.

LibreOffice Office Documents LibreOffice is an open-source alternative to Microsoft Office. Col-
lectiveAccess can use it to index and create previews for Microsoft
Word, Excel and Powerpoint document. LibreOffice 4.0 or better is
supported.

1.2. System Requirements 7

CollectiveAccess Documentation, Release 1.8

Most users will want at a minimum GraphicsMagick and ffmpeg installed on their server, and should install other
packages as needed. For image processing you need only one of the following: GraphicsMagick, ImageMagick,
libGD.

1.2.7 PHP extensions for media processing (optional)

CA supports two different mechanisms to employ GraphicsMagick or ImageMagick. The preferred option is a PHP ex-
tensions that, when installed, provide a fast and efficient way for PHP applications such as CA to access GraphicsMag-
ick or ImageMagick functionality. Alternatively GraphicsMagick or ImageMagick can be invoked as a command-line
program directly without any PHP extension.

In general you should try to use a PHP extension rather than the command-line mechanism. The extensions provide
much better performance. Unfortunately, the extensions have proven to be unstable in some environments and can be
difficult to install on Windows systems. If you are running the PHP GMagick (for GraphicsMagick) or IMagick (for
ImageMagick) extension and are seeing segmentation faults or incorrect image encoding such as blank images you
should remove the extension, let the command-line mechanism take over and see if that improves things.

Note: GraphicsMagick version 1.3.32 and better break certain functions in the PHP GMagick extension API and
cause all media processing to fail in CollectiveAccess in versions prior to 1.7.9. Upgrade to the current version of
CollectiveAccess if you are seeing failed processing with later versions of GraphicsMagick from 1.3.32.

Both Gmagick and Imagick are available in the PHP PECL repository and often available as packages for various
operating systems. They should be easy to install on Unix-y operating systems like Linux and Mac OS X. Installation
on Windows is a waking nightmare.

1.2.8 Configuring PHP prior to installation

With the core software requirements installed on your server examine the newly installed PHP configuration file. A
few settings may need adjustment.

Your PHP configuration file is usually named php.ini. On Linux systems the php.ini file is often in /etc/php.ini or
/usr/local/lib/php.ini. If you cannot locate your php.ini file, look for its location in the output of phpinfo(), either by
running the PHP command line interpreter with the -i option (eg. php -i) or running a PHP script that looks like this:
<?php phpinfo(); ?> The output from phpinfo() will include the precise location of the php.ini file used to configure
PHP.

Once you’ve found your php.ini file verify and, if necessary, change the following values:

1. post_max_size - sets maximum size a POST-style HTTP request can be. The default value is 8 megabytes. If
you are uploading large media files (and most CollectiveAccess users are) you will need to raise this to a value
larger than the largest file size you are likely to encounter.

2. upload_max_filesize - sets the maximum size of an uploaded file. Set this to a the same large value set for
post_max_size.

3. memory_limit - sets the maximum amount of memory a PHP script may consume. The default is 128 megabytes
which should be enough for many systems, unless you are (a) uploading large images (b) reindexing the search
index of a large database or (c) importing data. Even if you have not received memory limit exceeded errors,
you may want to increase this limit to 196 or 256 megabytes.

4. display_errors - determines whether errors are printed to the screen or not. In some installation this is set to “off”
by default. While this is a good security decision for public-facing systems, it can make debugging installation
problems difficult. It is therefore suggested that while installing and testing CA you set this option to “On”

8 Chapter 1. Contents

http://pecl.php.net/gmagick
http://pecl.php.net/imagick

CollectiveAccess Documentation, Release 1.8

1.2.9 Installing Providence

To install CollectiveAccess Providence perform the following steps:

1. Set up an empty MySQL database for your installation. Give the database a name and create a login for it with
full read/write access. Note the login information - you’ll need it later. You can use the MySQL command line
or web-based tools like phpMyAdmin to create the database and login.

2. Copy the contents of the CollectiveAccess software distribution to the root of the web server instance in which
your installation will run. You can obtain the latest release version from our download page. If you wish to obtain
CollectiveAccess from the project’s GitHub repository run the following command from the parent of the di-
rectory into which you want to install CA: git clone https://github.com/collectiveaccess/
providence.git providencewhere the trailing “providence” is the name of the directory you want your
installation to be in. Git will create the directory for you.

3. Copy the setup.php-dist file (in the root directory of the CA distribution) to a file named setup.php. Edit
setup.php, changing the various directory paths and database login parameters to reflect your server setup.

4. Make sure the permissions on the app/tmp, app/log, vendor/ezyang/htmlpurifier/library/
HTMLPurifier/DefinitionCache and media directories are such that the web server can write to them.
In the next step, the web-based installer will need the access to create directories for uploaded media, and to
generate cached files. In most hosted environments these permissions will already be set correctly.

5. In a web browser navigate to the web-based installer. If the URL for your installation server is
http://www.myCollectiveaccessSite.org then the URL to the installer is http://www.
myCollectiveaccessSite.org/install. Enter your email address and select the installation profile
(a profile is a set of pre-configured values for your system) that best fits your needs. Then click on the “begin”
button. If you don’t see a profile suitable for your project you may want to ask on the support forum or look at
our list of contributed profiles.

6. The installer will give you login information for your newly installed system when installation is complete. Be
sure to note this information in a safe place!

1.2.10 Optional post installation tasks

Set up for background encoding of media

By default, CollectiveAccess will process all uploaded media immediately at time of upload. For large media files this
can make the user’s browser in unresponsive for an extended period of time while CA performs large and complex
media conversions. If you expect to be uploading many large media files you can enable background processing of
media by setting the __CA_QUEUE_ENABLED__ setting to 1 in your setup.php (it is off by default).

Once background processing is enabled, all media files exceeding a specific size will be queued for later processing.
Small sizes will still be run “while you wait” unless you modify the media processing configuration. To actually
process the images in the queue you must run the script support/bin/caUtils process-task-queue. This script is
typically run from a crontab (in Unix-like operating systems, at least).

You can run the queue processing script as often as you want. Only a single instance of the script is allowed to run
at any given time, so you need not worry about out-of-control queue processing scripts running simultaneously and
depleting server resources. Note that the queue processing script should always be run under a user with write-access
to the CA media directory.

1.2.11 What to do if something goes wrong?

1.2. System Requirements 9

http://www.collectiveaccess.org/download
http://git-scm.com
http://collectiveaccess.org/support/forum
http://www.collectiveaccess.org/configuration

CollectiveAccess Documentation, Release 1.8

Tip: If your CollectiveAccess installation fails, the first thing to do is examine error messages on screen or in the log
(written to the app/log directory). If you receive a blank white screen odds are error messages are being suppressed in
your PHP php.ini configuration file. Try changing the display_errors option to “On” and then attempt to reinstall.

If you are totally stumped after reviewing the error messages and logs you can find help on the online support forum.
Please include a full description of your problem as well as the operating system you are running, the version of CA
you are running, the text of any error messages, the output of phpinfo() and the output of the CA “Configuration
Check” (available in the “Manage” menu under “System Configuration”) - assuming you are able to log in. We will
try our best to resolve your problems quickly.

You may also want to look at our list of OS specific Installation notes.

1.3 Backing up a CollectiveAccess installation

• Backing up your database

• Backing up your digital media

• Backing up your configuration files

• Summary

Three types of data need to be backed up on a regular basis:

• The database

• Digital media

• Configuration files

All of the procedures outlined in this document assume that you’re using a tool that backs up files - something that
copies files on your system to some other archival medium, and can restore them from that medium as needed. This
could be a program such as BRU (http://www.tolisgroup.com/), AMANDA (http://www.amanda.org/) or Bacula (http:
//www.bacula.org/) archiving your files to digital tape or a command-line Unix program such as rsync mirroring files
from your server to another server or an external hard drive.

1.3.1 Backing up your database

To back-up your CollectiveAccess database, you need to have MySQL “dump” it to a file and then have your back-up
tool archive that file. MySQL comes with a command-line program called mysqldump that can create a complete
snapshot of a database in a single file. The snapshot file will contain SQL commands to restore both the structure of
the database and all of the data. A typical command-line invocation of mysqldump would look something like this:

mysqldump -udb_login_name -pdb_login_password database_name > /path/ to/dumpfile/my_
→˓database_backup.dump

where the db_login_name, db_login_password and database_name reflect the settings on your system, and
my_database_backup.dump is the name of the newly created file.

You can automate the execution of mysqldump by adding an invocation to your crontab (on Unix- like systems) or
equivalent on Windows. A more featureful solution is a MySQL backup automation script such as AutoMySQLBackup
which can take care of naming and compression of snapshots, and can easily handle multiple databases.

10 Chapter 1. Contents

http://www.collectiveaccess.org/support/forum
http://www.tolisgroup.com/
http://www.amanda.org/
http://www.bacula.org/
http://www.bacula.org/

CollectiveAccess Documentation, Release 1.8

1.3.2 Backing up your digital media

CollectiveAccess stores all uploaded and derived digital media in a series of sub-directories under /media in the root
of your installation. Simply backing up the entire contents of media is sufficient in most cases.

1.3.3 Backing up your configuration files

CollectiveAccess configuration files are stored in a sub-directory named conf under app (aka. app/conf). This entire
directory should be backed up. Your setup.php file, located in the root of your installation and which contains some
basic configuration information such as the locations of the application configuration file, should also be backed up.

1.3.4 Summary

For a typical CollectiveAccess installation where media and configuration files are stored in the typical (and pre-
configured) locations, and assuming that you are writing database snapshots into a “dumps” directory in a location
outside of the web server root, you should be backing-up, at a minimum, the following directories:

• /path/to/mysql/dumps

• /path/to/collectiveaccess/app/conf

• /path/to/collectiveaccess/media

• /path/to/collectiveaccess/setup.php

Depending upon the setup and size of your CollectiveAccess installation, server and back-up system you may elect
to simply back-up the entire CollectiveAccess directory structure including the application code and supporting di-
rectories, rather than specifically selecting the directories above. This has the advantage of providing a complete
ready-to-run backup and is the preferred option if it is possible. If you cannot do this, you can always download the
CollectiveAccess application code at CollectiveAccess.org.

1.4 Installation

1.4.1 Installing on Linux

Ubuntu

Ubuntu 16.04LTS

Packages:

apt install -y git screen mysql-server ghostscript libgraphicsmagick-dev xpdf dcraw redis-server ffmpeg exiftool libre-
office apache2 systemctl enable apache2.service systemctl start apache2.service apt-get install -y software-properties-
common add-apt-repository ppa:ondrej/php apt install -y php7.2 libapache2-mod-php7.2 php7.2-common php7.2-
mbstring php7.2-xmlrpc php7.2-gd php7.2-xml php7.2-intl php7.2-mysql php7.2-cli php7.2-zip php7.2-curl php7.2-
posix php7.2-dev php-pear php7.2-redis php7.2-gmagick php7.2-gmp

Ubuntu 18.04LTS

To come

1.4. Installation 11

CollectiveAccess Documentation, Release 1.8

Red Hat Enterprise Linux/CentOS

RHEL/CentOS 7

Packages:

yum -y install yum-utils mariadb-server ghostscript ghostscript-devel

yum -y install https://dl.fedoraproject.org/pub/epel/epel-release-latest-7.noarch.rpm yum -y install http://rpms.
remirepo.net/enterprise/remi-release-7.rpm yum -y install GraphicsMagick-devel

yum -y install httpd yum-config-manager –enable remi-php73 yum -y install php php-mcrypt php-cli php-gd php-curl
php-mysqlnd php-zip php-fileinfo php-devel php-gmagick php-opcache php-process php-xml php-mbstring php-redis
redis

rpm -Uvh http://li.nux.ro/download/nux/dextop/el7/x86_64/nux-dextop-release-0-5.el7.nux.noarch.rpm yum -y in-
stall ffmpeg ffmpeg-devel

yum -y install xpdf dcraw mediainfo git screen wkhtmltopdf yum -y install mod_ssl openssl

systemctl enable mariadb systemctl start mariadb systemctl enable httpd systemctl start httpd systemctl enable redis
systemctl start redis

RHEL/CentOS 8

yum -y install mariadb-server dnf -y install https://dl.fedoraproject.org/pub/epel/epel-release-latest-8.noarch.rpm dnf
-y install https://rpms.remirepo.net/enterprise/remi-release-8.rpm dnf -y install yum-utils dnf config-manager –set-
enabled remi dnf -y install redis httpd mod_ssl dnf -y module install php:remi-7.3 dnf -y install git screen dnf -y
install php-cli php-gd php-curl php-mysqlnd php-zip php-fileinfo php-gmagick php-opcache php-process php-xml
php-mbstring php-redis redis

dnf -y install ghostscript

dnf install –nogpgcheck https://dl.fedoraproject.org/pub/epel/epel-release-latest-8.noarch.rpm dnf install
–nogpgcheck https://download1.rpmfusion.org/free/el/rpmfusion-free-release-8.noarch.rpm https://download1.
rpmfusion.org/nonfree/el/rpmfusion-nonfree-release-8.noarch.rpm dnf config-manager –enable PowerTools

dnf -y install ffmpeg

firewall-cmd –zone=public –add-service=http –permanent firewall-cmd –zone=public –add-service=https –permanent
firewall-cmd –reload

systemctl enable mariadb systemctl start mariadb systemctl enable httpd systemctl start httpd

1.4.2 Installing on Mac OS

Note: Note: these instructions have been tested on MacOS 10.14 (Mojave). They may or may not work on earlier
versions of MacOS.

CollectiveAccess relies on a number of open-source software packages to run, such as MySQL (database server), PHP
(programming lanaguage) and Apache or nginx (web server) to name just a few. The simplest way to install these
required packages on Mac OS is to use the Homebrew package manager. Homebrew can be installed by opening a
Mac OS Terminal window and pasting this command:

/usr/bin/ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/
→˓master/install)"

12 Chapter 1. Contents

https://dl.fedoraproject.org/pub/epel/epel-release-latest-7.noarch.rpm
http://rpms.remirepo.net/enterprise/remi-release-7.rpm
http://rpms.remirepo.net/enterprise/remi-release-7.rpm
http://li.nux.ro/download/nux/dextop/el7/x86_64/nux-dextop-release-0-5.el7.nux.noarch.rpm
https://dl.fedoraproject.org/pub/epel/epel-release-latest-8.noarch.rpm
https://rpms.remirepo.net/enterprise/remi-release-8.rpm
https://dl.fedoraproject.org/pub/epel/epel-release-latest-8.noarch.rpm
https://download1.rpmfusion.org/free/el/rpmfusion-free-release-8.noarch.rpm
https://download1.rpmfusion.org/nonfree/el/rpmfusion-nonfree-release-8.noarch.rpm
https://download1.rpmfusion.org/nonfree/el/rpmfusion-nonfree-release-8.noarch.rpm
https://brew.sh

CollectiveAccess Documentation, Release 1.8

Once installed most required software can be installed using the brew command.

Mac OS 10.14 comes with the Apache web server preinstalled. It’s tricky to get PHP installed by Homebrew to work
with the preinstalled Apache though, so it’s best to use Homebrew-managed installation. Before we install Apache
with Homebrew, first shutdown the preinstalled server and disable it from starting automatically in the future using
these Terminal commands:

sudo apachectl stop
sudo launchctl unload -w /System/Library/LaunchDaemons/org.apache.httpd.plist 2>/dev/
→˓null

Now install Apache by typing in Terminal:

brew install httpd

Next, set Apache to start itself automatically every time you reboot the Mac:

sudo brew services start httpd

You should now be able to connect to the web server on port 8080 (the default when installing with Brew) by going to
the URL http://localhost:8080 in a web browser running on the Mac. The message “It works!” should display.

Tip: If you want to run Apache on the standard port 80 you’ll need to open the Apache configuration file located at
/usr/local/etc/httpd/httpd.conf, find the line Listen 8080 and change it to Listen 80. Then restart the server with the
Terminal command sudo apachectl -k restart

Next install PHP version 7.2 running in the Terminal:

brew install php@7.2

Then edit the Apache configuration file located at /usr/local/etc/httpd/httpd.conf, adding the line:

LoadModule php7_module /usr/local/opt/php@7.2/lib/httpd/modules/libphp7.so

Next, look for this configuration in the Apache configuration file:

<IfModule dir_module>
DirectoryIndex index.html

</IfModule>

and replace it with this:

<IfModule dir_module>
DirectoryIndex index.php index.html

</IfModule>

<FilesMatch \.php$>
SetHandler application/x-httpd-php

</FilesMatch>

Restart the server with the Terminal command sudo apachectl -k restart. You should now have PHP enabled within
your Apache web server.

In order to use the PHP on the Terminal command line (which can be handy) you’ll need to add the Homebrew PHP
installation directory into your command PATH. Do this by entering in the Terminal:

1.4. Installation 13

CollectiveAccess Documentation, Release 1.8

echo 'export PATH="/usr/local/opt/php@7.2/bin:$PATH"' >> ~/.bash_profile
echo 'export PATH="/usr/local/opt/php@7.2/sbin:$PATH"' >> ~/.bash_profile

Close the current Terminal window and open a new one. Typing php -v in the Terminal should return output similar
to:

PHP 7.1.23 (cli) (built: Feb 22 2019 22:08:13) (NTS)
Copyright (c) 1997-2018 The PHP Group
Zend Engine v3.1.0, Copyright (c) 1998-2018 Zend Technologies

Now let’s install MySQL. CollectiveAccess works with version 5.7. It is not yet compatible with version 8.0. To install
version 5.7:

brew install mysql@5.7

Then add the MySQL install to your command line path with:

echo 'export PATH="/usr/local/opt/mysql@5.7/bin:$PATH"' >> ~/.bash_profile

You will need to close the Terminal window and open a new one for the path changes to take effect. Next start up
MySQL, and configure it to restart automatically on reboot:

brew services start mysql@5.7

If you don’t want MySQL starting up automatically every time you boot your machine you can start it up on demand
using brew services run mysql@5.7

Next we install various packages to support processing of media: ffmpeg (audio/video), Ghostscript (PDFs), Graphic-
sMagick (mages), mediainfo (metadata extraction and xpdf (content extraction from PDFs):

brew install ffmpeg ghostscript GraphicsMagick mediainfo xpdf

Finally, we are ready to install the CollectiveAccess Providence back-end cataloguing application. The web server
we installed earlier uses /usr/local/var/www for documents by default (the “web server root” directory). We are
going to place CollectiveAccess in this directory, in a subdirectory named ca. A URL for this directory will be
http://localhost:8080/ca (assuming that you’re still running on port 8080). If you’re running on port 80, the URL will
be http://localhost/ca.

Tip: You can use a different directory for the application by editing /usr/local/etc/httpd/httpd.conf. Edit the line
DocumentRoot “/usr/local/var/www” to point to your chosen directory.

You can download a release from https://github.com/collectiveaccess/providence/releases, or install is with Git. Using
a release in somewhat simpler to install, while using Git allows you to easily update files and switch to development
versions of CollectiveAccess.

To install with Git, in the Terminal change directory into the web server root directory.

cd /usr/local/var/www

Then “clone” the Providence application code from GitHub:

git clone https://github.com/collectiveaccess/providence.git ca

If you prefer to download a release, place the release ZIP or tgz file downloaded from https://github.com/
collectiveaccess/providence/releases into /usr/local/var/www and uncompress it. Then rename the resulting directory
(named something like providence-1.7.8) to ca.

14 Chapter 1. Contents

http://localhost:8080/ca
http://localhost/ca
https://github.com/collectiveaccess/providence/releases
https://github.com/collectiveaccess/providence/releases
https://github.com/collectiveaccess/providence/releases

CollectiveAccess Documentation, Release 1.8

In the Terminal change directory into the ca application directory and copy the setup.php-dist file to setup.php. This
file contains basic configuration for Providence. The “-dist” version is simply a template. The setup.php copy will
need to be customized for your installation:

cd /usr/local/var/www/ca
cp setup.php-dist setup.php

Edit setup.php, changing settings to suit. At a minimum you will need to edit the database login settings
__CA_DB_USER__, __CA_DB_PASSWORD__, __CA_DB_DATABASE__. You may want to edit other settings,
which are described in setup.php. You should also edit the __CA_STACKTRACE_ON_EXCEPTION__ to be true.
This will allow you to receive full error messages on screen if something goes wrong.

By default brew installs the MySQL database with an all-access, password-less administrative account named root.
It’s generally insecure to leave this account password-less, but in a testing environment this may not matter. If
you decide to use the root account, set __CA_DB_USER__ to “root”, leave __CA_DB_PASSWORD__ blank and
set __CA_DB_DATABASE__ to the name you’ll use for your database. For this example, we’ll assume the database is
to be named my_archive.

MySQL can support multiple databases in a single installation, so the my_archive database must be created explicitly.
Log into mysql in the Terminal using the mysql command (assuming you haven’t set a password for the root account):

mysql -uroot

At the mysql> prompt enter:

CREATE DATABASE my_archive;

If you want to use a MySQL login specific to the newly created database, while still at the mysql> prompt enter:

GRANT ALL on my_archive.* to my_user@localhost identified by 'my_password';

where my_user is your preferred MySQL user name and my_password is your preferred password for the MySQL
login. MySQL logins are specific to MySQL and have nothing to do with your server login. You can set the user name
and password to whatever you want, independent of all other login credentials.

Go back to setup.php and enter your MySQL login credentials into the __CA_DB_USER__, __CA_DB_PASSWORD__
and __CA_DB_DATABASE__ settings.

Restart the server with the Terminal command:

sudo apachectl -k restart

Certain directories in the installation need to be writeable by the web server, within which CA runs. On MacOS,
the web server typically runs as the user www. Change the permissions on the app/tmp, app/log, media and vendor
directories to be writeable by www in Terminal:

cd /usr/local/var/www/ca
sudo chown -R www app/tmp app/log media vendor
sudo chmod -R 755 app/tmp app/log media vendor

The first sudo command will require entry of your MacOS login password.

Navigate in a web browser to http://localhost:8080/ca (adjusting the port to whatever you have configured, if neces-
sary). You should see:

1.4. Installation 15

http://localhost:8080/ca

CollectiveAccess Documentation, Release 1.8

Click on the installer link and you should see:

16 Chapter 1. Contents

CollectiveAccess Documentation, Release 1.8

Select a profile, enter your email address and click on Begin installation. A profile is a preset template with record
types, fields and other cataloguing settings that the installer uses to define a new working system. The standard profiles
Providence ships with include implementations of widely used standards:

1.4. Installation 17

CollectiveAccess Documentation, Release 1.8

You can add your own profiles, or use profiles from other users by dropping profile files in the
/usr/local/var/www/ca/install/profiles/xml directory.

If you want to experiment with different profiles you may wish to set the
__CA_ALLOW_INSTALLER_TO_OVERWRITE_EXISTING_INSTALLS__ option in setup.php.
By default the installer will refuse to install over an existing installation. With
__CA_ALLOW_INSTALLER_TO_OVERWRITE_EXISTING_INSTALLS__ set the installer will include an op-
tion to overwrite existing data. In a real system this is extremely dangerous – any one with access to the installer can

18 Chapter 1. Contents

CollectiveAccess Documentation, Release 1.8

delete the entire system – but is very handy for testing and evaluation.

1.4.3 Installing on Windows

Installation of media handling libraries and delegates such as ffmpeg can be problematic because it is more difficult to
build software from source on Windows. See Compiling_ffmpeg for information how to install ffmpeg for Windows.

The format of the /app/conf/External_Applications.conf file is different in Windows installations. For example, the
correct format for the entry describing the ghostscript application is

ghostscript_app = E:/prog/gs/gswin32c.exe

in this case, ghostscript is installed on disk E: in the subdirectory prog/gs. The application is the non-windows version
of ghostscript.

The app/helpers/mediaPluginHelpers.php file must also be updated to function properly in Windows. The entry for
ghostscript must be changed from

exec($ps_path_to_ghostscript." -v 2> /dev/null", $va_output, $vn_return);

to

exec($ps_path_to_ghostscript." -v 2> /$null", $va_output, $vn_return);

Similarly, all other media helper functions to detect the other processors you have installed for CA to used must be
updated to change /dev/null to /$null.

Other places that have /dev/null include

TilePicParser in applibcoreparsers CoreImage.php in applibcorePluginsMedia ImageMagick.php in applibcorePlug-
insMedia PDFWand.php in applibcorePluginsMedia

references to /dev/null must be changed to /\$null in order for the plugin to work correctly. This is particularly
important if you are using ImageMagic. Both ImageMagick.php and TilePicParser.php must be changed for this
process to work.

The external_applications line for ImageMagick might be

imagemagick_path = E:/Prog/ImageMagick

depending on where you have installed ImageMagick. Both the static and dynamic versions of ImageMagick seem to
work well.

The ImageMagick process is very slow and libGD is preferred for speed, but it requires much more memory. If you
are using it locally where you have control over the memory size, up the memory limit entry of php.ini to

memory_limit = 512M

This will allow must photographs to be handled properly without the tilepic function running out of memory.

1.5 Setup.php

• Database server host name

• Database login user name

• Database login password

• Database name

1.5. Setup.php 19

CollectiveAccess Documentation, Release 1.8

• System Name

• Administrative Email

• Outgoing email

• Timezone Setting

• Background Processing

• Default Locale

• Clean URLs

• App Names for Multiple CollectiveAccess Systems

• Google Maps Key

• Caching

• Overwrite Existing Installation

• Application Exception Error Messaging

In the main directory of your Providence install, there is a file called setup.php.dist. Make a copy of this file and rename
it setup.php. For your CollectiveAccess system to work, you MUST add values for your database server hostname,
user name, password, database, and administrative e-email. You also set the site’s timezone in setup.php. Most
other settings can be left alone.

1.5.1 Database server host name

This is often set to ‘localhost’.

if (!defined("__CA_DB_HOST__")) {
define("__CA_DB_HOST__", 'localhost');

}

1.5.2 Database login user name

if (!defined("__CA_DB_USER__")) {
define("__CA_DB_USER__", 'your_username_here');

}

1.5.3 Database login password

if (!defined("__CA_DB_PASSWORD__")) {
define("__CA_DB_PASSWORD__", 'your_password_here');

}

1.5.4 Database name

if (!defined("__CA_DB_DATABASE__")) {
define("__CA_DB_DATABASE__", 'your_databasename_here');

}

20 Chapter 1. Contents

CollectiveAccess Documentation, Release 1.8

1.5.5 System Name

This value will be used on emails, on the login screen, in browser window titles, etc.

if (!defined("__CA_APP_DISPLAY_NAME__")) {
define("__CA_APP_DISPLAY_NAME__", "insert_name_here");

}

1.5.6 Administrative Email

An e-mail must be set up at this stage to send error reports for system configuration issues.

if (!defined("__CA_ADMIN_EMAIL__")) {
define("__CA_ADMIN_EMAIL__", 'example@info.com');

}

1.5.7 Outgoing email

For CollectiveAccess to be able to send email notifications __CA_SMTP_SERVER__ and __CA_SMTP_PORT__
must be set. If your outgoing (SMTP) mail server requires you to authenticate, configure your login and connection
details in __CA_SMTP_AUTH__, __CA_SMTP_USER__, __CA_SMTP_PASSWORD__ and __CA_SMTP_SSL__

__CA_SMTP_AUTH__ = authentication method for outgoing mail connection (set to PLAIN,
→˓LOGIN or CRAM-MD5; leave blank if no authentication is used.)
__CA_SMTP_SSL__ = SSL method to use for outgoing mail connection (set to SSL or TLS;
→˓leave blank if not authentication is used.)

1.5.8 Timezone Setting

Set your preferred time zone here. The default is to use US Eastern Standard Time. A list of valid time zone settings
is available at http://us3.php.net/manual/en/timezones.php.

Note: When importing data, you should switch to value ‘UTC’ before import, or else dates may import incorrectly.

date_default_timezone_set('America/New_York');

1.5.9 Background Processing

The task queue allows users to push potentially long running processes, such as processing of large video and image
files into the background and continue working. Set this to a non-zero value if you want to use the task queue. Be sure
to configure the task queue processing script to run (usually via CRON) if you set this option.

if (!defined("__CA_QUEUE_ENABLED__")) {
define("__CA_QUEUE_ENABLED__", 0);

}

1.5. Setup.php 21

http://us3.php.net/manual/en/timezones.php

CollectiveAccess Documentation, Release 1.8

1.5.10 Default Locale

The default locale is used in situations where no locale is specifically set by the user, prior to login or prior to setting
your preferred locale in user preferences for the first time. You should set this to the locale in which your users
generally work.

Note: Whatever locale you set here MUST be present in your system locale list. The default value is US/English,
which exists in most configurations.

if (!defined("__CA_DEFAULT_LOCALE__")) {
define("__CA_DEFAULT_LOCALE__", "en_US");

}

1.5.11 Clean URLs

If the Apache mod_rewrite module is available on your server you may set this to have Providence use “clean” urls –
urls with the index.php handler omitted. Only set this if your web server includes mod_rewrite and it is enabled using
the provided .htaccess file.

define("__CA_USE_CLEAN_URLS__", 0);

1.5.12 App Names for Multiple CollectiveAccess Systems

If you are running more than one instance of CollectiveAccess on the same server make sure each instance has its own
unique __CA_APP_NAME__ setting. __CA_APP_NAME__ must include letters, numbers and underscores only -
no spaces or punctuation!

if (!defined("__CA_APP_NAME__")) {
define("__CA_APP_NAME__", "your_name_here");

}

1.5.13 Google Maps Key

Add your Google Maps key to use for mapping and geocoding feature (optional).

if (!defined("__CA_GOOGLE_MAPS_KEY__")) {
define("__CA_GOOGLE_MAPS_KEY__", "");

}

1.5.14 Caching

The default file-based caching should work acceptably in many setups. Alternate schema may be used, including
redis, sqlite, memcached or php APC. All require additional software be present on your server, and in general all will
provide better performance than file-based caching.

Options are: ‘file’, ‘memcached’, ‘redis’, ‘apc’ and ‘sqlite’. Memcached, redis and apc require PHP extensions that are
not part of the standard CollectiveAccess configuration check. If you do configure them here and your PHP installation
doesn’t have the required extension you may see critical errors. sqlite requires the PHP PDO extension and a working
install of sqlite. This is not guaranteed to be present on your server, but often is.

22 Chapter 1. Contents

CollectiveAccess Documentation, Release 1.8

if (!defined('__CA_CACHE_BACKEND__')) {
define('__CA_CACHE_BACKEND__', 'file');

}

Options for the caching back-ends you may wish to set include:

__CA_CACHE_FILEPATH__ = Path to on on disk location for storage of cached data
__CA_CACHE_TTL__ = Cached data time-to-live (in seconds)
__CA_MEMCACHED_HOST__ = Hostname of memcached server
__CA_MEMCACHED_PORT__ = Port of memcached server
__CA_REDIS_HOST__ = Hostname of redis server
__CA_REDIS_PORT__ = Port of redis server
__CA_REDIS_DB__ = redis database index (typically a number between 0 and 15)

1.5.15 Overwrite Existing Installation

Overwriting an existing installation can be useful while a site is in development. Overwriting will completely destroy
the database and anything in it, allowing you to pick a new installation profile and start over. This option should be
set back to false before delivering to a client.

Note that in overwriting your database you will destroy *all* data in the database
including any non-CollectiveAccess tables. Use this option at your own risk!
if (!defined('__CA_ALLOW_INSTALLER_TO_OVERWRITE_EXISTING_INSTALLS__')) {

define('__CA_ALLOW_INSTALLER_TO_OVERWRITE_EXISTING_INSTALLS__', false);
}

1.5.16 Application Exception Error Messaging

Set to display detailed error information on-screen whenever an application exception occurs. This can be helpful for
developers in situtations where detailed exception messages are useful but full debugging output is not required. For
production use you should set this to false. Note that exceptions are always logged to the application log in app/log,
regardless of what is set here.

if (!defined('__CA_STACKTRACE_ON_EXCEPTION__')) {
define('__CA_STACKTRACE_ON_EXCEPTION__', false);

}

require(__DIR__."/app/helpers/post-setup.php");

1.6 Introduction to Data in CollectiveAccess

• Primary Tables and Records

• Bundles

– Labels

– Intrinsics

– Metadata elements

1.6. Introduction to Data in CollectiveAccess 23

CollectiveAccess Documentation, Release 1.8

– Relationships

• Installation Profiles

1.6.1 Primary Tables and Records

CollectiveAccess is structured around several primary tables of metadata elements, such as Objects, Entities, Col-
lections, and more. Each primary table has intrinsic bundles and its own set of preferred and non-preferred labels
bundles.

Read more: Primary Tables

1.6.2 Bundles

Bundle is a high-level term for the various structures in CollectiveAccess used to store catalogued content. There are
four distinct types of bundles, each with their own unique set of characteristics and uses: labels, intrinsics, metadata
elements and relationships. Records are simply assemblages of various bundles, chosen to meet specific representa-
tional requirements.

Labels

Labels are used to store names or titles for records. Labels come in two varieties: preferred and non-preferred. Each
record has one, and only one, preferred label that represents the record’s current “name”, and is used as the default
display title.

Records may have any number of non-preferred labels. Non-preferred labels are typically used to record alternative
names/titles, which may be used in searches and optionally displayed.

Both preferred and non-preferred labels are always available for all records in CollectiveAccess. No special configu-
ration is required. Note that (with some exceptions) every record in CollectiveAccess is required to have a preferred
label. Configuration options may be set to manadate uniqueness of labels with a system, to distinguish between
different types of non-preferred labels (a requirement of some knowledge representation standard) and more.

Read more: Labels.

Intrinsics

Intrinsics are integral fields present in all CollectiveAccess systems. As with labels, intrinsics are always available and
do not require special configuration. Intrinsics are simple, non-repeating values that typically exist to support specific
functionality or, less often, for historical reasons. They cannot be removed from CollectiveAccess, but in most cases
can be hidden if not needed.

Commonly used intrinsics include idno (record identifier), type_id (record type), access (public web site visibility)
and status (record workflow status). Descriptions of all available intrinsic fields may be found in the primary table
documentation.

Metadata elements

Metadata elements are configurable data fields bound to the various records in your data schema. Metadata element are
able to accept a rich and varied range of data types, can repeat, can support multilingual values, and may be composed
into complex, multi-value fields using container elements. The bulk of the data schema for a typical system will be
implemented using metadata elements to build installation-specific data structures.

24 Chapter 1. Contents

CollectiveAccess Documentation, Release 1.8

Read more: Metadata Elements

Relationships

Relationships are bi-directional links between pairs of records. They may be created between records in any primary
table without restriction. All relationships include references to relationship types – configurable specifiers that dis-
tinguish different kinds of relationships that may occur. Relationship types between object and entity records might
include, for example, “creator”, “donor” and “subject”.

Any number of relationships can be created between a pair of records, and each relationship can optionally incorporate
additional metadata elements. Relationships also support a handful of intrinsics, but do not take labels.

Read more: Relationships

1.6.3 Installation Profiles

Installation profiles are the XML documents that create your data model and set up your database. Every CollectiveAc-
cess instance must have an installation profile. Many options are pre-loaded, but typically you need to customize one
for your needs.

Read more: Installation Profiles

1.7 Profiles

1.7.1 Metadata Standards

Standards-compliant profiles available “out-of-the-box”. You can always configure others yourself if you are willing
to create an installation profile):

1.7. Profiles 25

CollectiveAccess Documentation, Release 1.8

Stan-
dard

Description Support Pro-
file

Dublin
Core

The “least common denominator” format suitable for those
experimenting with cataloguing strategies, or with simple cat-
aloguing requirements.

Dublin Core is supported as a con-
figuration profile for item-level (ob-
ject) cataloguing. The profile set
up includes fields as per the Sim-
ple Dublin Core specification with
a few extensions (ex. for uploaded
media). Overhauled in 2014.

Dublin
Core
pro-
file
on
Github

Dar-
win-
Core

The Darwin Core standard was originally conceived to facil-
itate the discovery, retrieval, and integration of information
about modern biological specimens, their spatiotemporal oc-
currence, and their supporting evidence housed in collections
(physical or digital). The Darwin Core today is broader in
scope and more versatile. It is meant to provide a stable stan-
dard reference for sharing information on biological diversity.
As a glossary of terms, the Darwin Core is meant to provide
stable semantic definitions with the goal of being maximally
reusable in a variety of contexts.

Dar-
win-
Core
pro-
file
on
Github

EBU
Core

Based on Dublin Core, EBUCore is a minimum list of at-
tributes to describe audio and video resources for a wide range
of broadcasting applications including for archives, exchange
and publication.

Available as a configuration profile
compliant with the EBU Core Ver-
sion 1.4 specification.

EBU
Core
pro-
file
on
Github

PB-
Core

From PBCore.org:The PBCore (Public Broadcasting Meta-
data Dictionary) was created by the public broadcasting com-
munity in the United States of America for use by public
broadcasters and related communities. Like EBUCore, the
PBCore metadata specification is built on the foundation of
Dublin Core, emphasizing the description of audio and video
resources in production, archival, and broadcasting environ-
ments.

PBCore is supported as a configura-
tion profile for item-level (instanti-
ation/intellectual content) catalogu-
ing, and as an export target.

PB-
Core
pro-
file
on
Github

CDWA-
Lite
/
CCO

From the CDWA web site: CDWA Lite is an XML schema
to describe core records for works of art and material culture
based on the Categories for the Description of Works of Art
(CDWA) and Cataloging Cultural Objects: A Guide to De-
scribing Cultural Works and Their Images (CCO). CA can be
configured to implement the format of the XML schema in its
relational database. (For those keeping score: CA does not
store CDWA data in an XML format, but will be able to ex-
port data in such a format in the first version of the data export
feature).

CDWA is supported as a config-
uration profile for item-level (ob-
ject) and authority (entity, places,
collections, etc.) cataloguing. An
option to configure for the CDWA
subset defined by Cataloguing Cul-
tural Objects (CCO) is also pro-
vided. Will also be supported as a
data export target format. This sup-
port is not yet fully implemented.

CDWA
pro-
file
on
Github

EAD EAD is widely used in the United States as a data standard
for finding aids produced by archives, libraries, museums, and
manuscript repositories.

EAD is supported as a data export
target format.

DACS DACS is widely used in the United States as a data content
standard for finding aids produced by archives, libraries, mu-
seums, and manuscript repositories.

DACS is supported as a configura-
tion profile for all archival levels of
description.

DACS
pro-
file
on
Github

ISAD(G)ISAD(G) is widely used data content standard for finding aids
produced by archives, libraries, museums, and manuscript
repositories.

ISAD(G) is supported as a configu-
ration profile for all archival levels
of description.

ISAD(G)
pro-
file
on
Github

VRA
Core

VRA VRA Core 4.0 is a data standard for the cultural heritage
community that was developed by the Visual Resources Asso-
ciation’s Data Standards Committee. The element set provides
a categorical organization for the description of works of vi-
sual culture as well as the images that document them.

VRA Core 4.0 is supported as a con-
figuration profile for item-level (ob-
ject) and collection-level catalogu-
ing. It will also be supported as a
data export target format. This sup-
port is not yet implemented.

VRA
Core
pro-
file
on
Github

SPEC-
TRUM

SPECTRUM is a procedural and data standard for museums,
archives, and cultural heritage institutions primarily in the UK.

A SPECTRUM-like setup is sup-
ported as a configuration profile. It
has not been vetted by the Collec-
tionsTrust and should not be consid-
ered as “compliant.”

SPEC-
TRUM
pro-
file
on
Github

26 Chapter 1. Contents

http://www.dublincore.org/
http://www.dublincore.org/
http://www.dublincore.org/documents/dces/
http://www.dublincore.org/documents/dces/
https://github.com/collectiveaccess/providence/blob/master/install/profiles/xml/dublincore_2014.xml
https://github.com/collectiveaccess/providence/blob/master/install/profiles/xml/dublincore_2014.xml
https://github.com/collectiveaccess/providence/blob/master/install/profiles/xml/dublincore_2014.xml
https://github.com/collectiveaccess/providence/blob/master/install/profiles/xml/dublincore_2014.xml
https://github.com/collectiveaccess/providence/blob/master/install/profiles/xml/dublincore_2014.xml
https://github.com/collectiveaccess/providence/blob/master/install/profiles/xml/dublincore_2014.xml
http://rs.tdwg.org/dwc/
http://rs.tdwg.org/dwc/
http://rs.tdwg.org/dwc/
https://github.com/collectiveaccess/providence/blob/master/install/profiles/xml/darwincore.xml
https://github.com/collectiveaccess/providence/blob/master/install/profiles/xml/darwincore.xml
https://github.com/collectiveaccess/providence/blob/master/install/profiles/xml/darwincore.xml
https://github.com/collectiveaccess/providence/blob/master/install/profiles/xml/darwincore.xml
https://github.com/collectiveaccess/providence/blob/master/install/profiles/xml/darwincore.xml
https://github.com/collectiveaccess/providence/blob/master/install/profiles/xml/darwincore.xml
https://github.com/collectiveaccess/providence/blob/master/install/profiles/xml/darwincore.xml
https://tech.ebu.ch/metadata
https://tech.ebu.ch/metadata
https://github.com/collectiveaccess/providence/blob/master/install/profiles/xml/ebucore.xml
https://github.com/collectiveaccess/providence/blob/master/install/profiles/xml/ebucore.xml
https://github.com/collectiveaccess/providence/blob/master/install/profiles/xml/ebucore.xml
https://github.com/collectiveaccess/providence/blob/master/install/profiles/xml/ebucore.xml
https://github.com/collectiveaccess/providence/blob/master/install/profiles/xml/ebucore.xml
https://github.com/collectiveaccess/providence/blob/master/install/profiles/xml/ebucore.xml
http://pbcore.org/
http://pbcore.org/
https://github.com/collectiveaccess/providence/blob/master/install/profiles/xml/pbcore.xml
https://github.com/collectiveaccess/providence/blob/master/install/profiles/xml/pbcore.xml
https://github.com/collectiveaccess/providence/blob/master/install/profiles/xml/pbcore.xml
https://github.com/collectiveaccess/providence/blob/master/install/profiles/xml/pbcore.xml
https://github.com/collectiveaccess/providence/blob/master/install/profiles/xml/pbcore.xml
https://github.com/collectiveaccess/providence/blob/master/install/profiles/xml/pbcore.xml
http://www.getty.edu/research/publications/electronic_publications/index.html
http://www.getty.edu/research/publications/electronic_publications/index.html
http://cco.vrafoundation.org/
https://github.com/collectiveaccess/providence/blob/master/install/profiles/xml/cdwalite.xml
https://github.com/collectiveaccess/providence/blob/master/install/profiles/xml/cdwalite.xml
https://github.com/collectiveaccess/providence/blob/master/install/profiles/xml/cdwalite.xml
https://github.com/collectiveaccess/providence/blob/master/install/profiles/xml/cdwalite.xml
https://github.com/collectiveaccess/providence/blob/master/install/profiles/xml/cdwalite.xml
http://www.loc.gov/ead/
http://www.archivists.org/governance/standards/dacs.asp
https://github.com/collectiveaccess/providence/blob/master/install/profiles/xml/dacs.xml
https://github.com/collectiveaccess/providence/blob/master/install/profiles/xml/dacs.xml
https://github.com/collectiveaccess/providence/blob/master/install/profiles/xml/dacs.xml
https://github.com/collectiveaccess/providence/blob/master/install/profiles/xml/dacs.xml
https://github.com/collectiveaccess/providence/blob/master/install/profiles/xml/dacs.xml
http://www.ica.org/en/isadg-general-international-standard-archival-description-second-edition
https://github.com/collectiveaccess/providence/blob/master/install/profiles/xml/isad_g.xml
https://github.com/collectiveaccess/providence/blob/master/install/profiles/xml/isad_g.xml
https://github.com/collectiveaccess/providence/blob/master/install/profiles/xml/isad_g.xml
https://github.com/collectiveaccess/providence/blob/master/install/profiles/xml/isad_g.xml
https://github.com/collectiveaccess/providence/blob/master/install/profiles/xml/isad_g.xml
http://core.vraweb.org/
http://core.vraweb.org/
https://github.com/collectiveaccess/providence/blob/master/install/profiles/xml/vracore.xml
https://github.com/collectiveaccess/providence/blob/master/install/profiles/xml/vracore.xml
https://github.com/collectiveaccess/providence/blob/master/install/profiles/xml/vracore.xml
https://github.com/collectiveaccess/providence/blob/master/install/profiles/xml/vracore.xml
https://github.com/collectiveaccess/providence/blob/master/install/profiles/xml/vracore.xml
https://github.com/collectiveaccess/providence/blob/master/install/profiles/xml/vracore.xml
http://www.collectionstrust.org.uk/spectrum
http://www.collectionstrust.org.uk/spectrum
https://github.com/collectiveaccess/providence/blob/master/install/profiles/xml/spectrum.xml
https://github.com/collectiveaccess/providence/blob/master/install/profiles/xml/spectrum.xml
https://github.com/collectiveaccess/providence/blob/master/install/profiles/xml/spectrum.xml
https://github.com/collectiveaccess/providence/blob/master/install/profiles/xml/spectrum.xml
https://github.com/collectiveaccess/providence/blob/master/install/profiles/xml/spectrum.xml
https://github.com/collectiveaccess/providence/blob/master/install/profiles/xml/spectrum.xml

CollectiveAccess Documentation, Release 1.8

1.7.2 Configuration Library

Listed below are a selection of user-contributed installation profiles. Some are based on standards and some are
completely custom; all were designed to meet the functional requirements of real-world projects. Even if none of
the profiles in the library can be used “out-of-the-box” for your project, some may provide development ideas and
useful points of departure for your own profile. Before attempting to decipher the profiles presented here be sure to
familiarize yourself with the profile syntax, as described in the Building System Installation Profiles manual.

Note that the profiles listed here are not intended as exemplars of “good design.” Many employ sub-optimal metadata
and user interface structures in order to accommodate various legacy and project-specific requirements. They are
presented merely as examples of how previous users have approached systems design for their particular discipline.
Your mileage may vary.

To use a profile listed here with your copy of CollectiveAccess download the desired profile and copy it into the
profiles/xml directory of the installer (Eg. /install/profiles/xml). After reloading the installer start page the newly
installed profile should appear in the profiles drop-down menu.

Libraries, Museum, and Archives

Project Description
The Sterling Morton Library A mixed materials system supporting archival processing, library materials, and

special collections cataloging.
Mattress Factory A profile supporting the documentation of site-specfic and installation-based art-

work.
Vancouver Holocaust Educa-
tion Centre

A profile for archives, library, and museum material with support for finding aids
and MARC records.

Vancouver Maritime Mu-
seum

A mixed material maritime collection with integrated archival content.

Consortiums

Project Description
Connecticut League Of
History Organization

Collections portal for multi-institution collections aggregator. Supports museum col-
lections cataloging as well as formal archives processing.

Novamuse Collections portal for the Association of Nova Scotia Museums

Institutional archives

Project Description
New Museum Institutional archive for the digital preservation of program documentation for an art museum

including exhibitions, public programs, education initiatives, and publications.
New School A mixed material digital archive including 2D, 3D and 4D special collections content.
New York So-
ciety Library

This digital humanities configuration supports cataloging for data visualizations as well as special
collections items.

Girl Scouts of
the USA

An institution archive profile configuration with support for collections cataloging of pho-
tographs, documents, costumes and other archival items such as rare publications.

1.7. Profiles 27

https://github.com/collectiveaccess/providence/blob/develop/install/profiles/xml/morton.xml
https://github.com/collectiveaccess/providence/blob/develop/install/profiles/xml/mattress.xml
https://github.com/collectiveaccess/providence/blob/develop/install/profiles/xml/vhec.xml
https://github.com/collectiveaccess/providence/blob/develop/install/profiles/xml/vhec.xml
https://github.com/collectiveaccess/providence/blob/develop/install/profiles/xml/VMM_new.xml
https://github.com/collectiveaccess/providence/blob/develop/install/profiles/xml/VMM_new.xml
https://github.com/collectiveaccess/providence/blob/develop/install/profiles/xml/clho_3.xml
https://github.com/collectiveaccess/providence/blob/develop/install/profiles/xml/clho_3.xml
https://github.com/collectiveaccess/providence/blob/develop/install/profiles/xml/novastory_config.xml
https://github.com/collectiveaccess/providence/blob/develop/install/profiles/xml/newmuseum.xml
https://github.com/collectiveaccess/providence/blob/develop/install/profiles/xml/newschool.xml
https://github.com/collectiveaccess/providence/blob/develop/install/profiles/xml/nysl_config.xml
https://github.com/collectiveaccess/providence/blob/develop/install/profiles/xml/nysl_config.xml
https://github.com/collectiveaccess/providence/blob/develop/install/profiles/xml/GSUSA.xml
https://github.com/collectiveaccess/providence/blob/develop/install/profiles/xml/GSUSA.xml

CollectiveAccess Documentation, Release 1.8

Performing Arts

Project Description
Brooklyn
Academy
of Music

A digital archive for a performing arts organization with support for documenting 150 years of per-
formance history by Eras, Season, Works, Productions, and Special Events. Supports cataloging of
photographs, moving images, documents, ephemera, promotional items, and memorabilia.

Jacob’s
Pillow
Dance

A digital archive supporting the performance and production history of a renowned dance festival.

Round-
about
Theatre
Company

A digital archive for a theatre company supporting the cataloging of documents, ephemera, mer-
chandise, costumes, props, as well as the documentation of stage productions, play readings, galas,
opening nights, and special events.

Art galleries

Project Description
University of Pittsburgh Art Gallery Supports general collections management for a university art gallery.
Kentler International Drawing Space A simple collections management system for an art gallery.

Moving Images

Project Description
Smithsonian Channel A video production and broadcast archive that support the description of moving

images and supporting materials.
Academy of Motion Picture
Arts & Sciences

A development platform for preservation workflows for digital film.

Paleontology

ProjectDescription
iDig-
Pa-
leo

The iDigPaleo (Fossil Insect Collaborative) profile makes available all the major collections of fossil insect
specimens in the United States by creating electronic specimen records consisting of digital images and
associated collection data.

1.7.3 XML Schema

• Introduction

• CollectiveAccess Basics

• About Profiles

– Types of Profiles in CollectiveAccess

– Parts of a Profile

28 Chapter 1. Contents

https://github.com/collectiveaccess/providence/blob/develop/install/profiles/xml/bam.xml
https://github.com/collectiveaccess/providence/blob/develop/install/profiles/xml/bam.xml
https://github.com/collectiveaccess/providence/blob/develop/install/profiles/xml/bam.xml
https://github.com/collectiveaccess/providence/blob/develop/install/profiles/xml/jacobspillow_update.xml
https://github.com/collectiveaccess/providence/blob/develop/install/profiles/xml/jacobspillow_update.xml
https://github.com/collectiveaccess/providence/blob/develop/install/profiles/xml/jacobspillow_update.xml
https://github.com/collectiveaccess/providence/blob/develop/install/profiles/xml/roundabout.xml
https://github.com/collectiveaccess/providence/blob/develop/install/profiles/xml/roundabout.xml
https://github.com/collectiveaccess/providence/blob/develop/install/profiles/xml/roundabout.xml
https://github.com/collectiveaccess/providence/blob/develop/install/profiles/xml/roundabout.xml
https://github.com/collectiveaccess/providence/blob/develop/install/profiles/xml/pittartgallery.xml
https://github.com/collectiveaccess/providence/blob/develop/install/profiles/xml/kentler.xml
https://github.com/collectiveaccess/providence/blob/develop/install/profiles/xml/sni_config.xml
https://github.com/collectiveaccess/providence/blob/develop/install/profiles/xml/ampas3.xml
https://github.com/collectiveaccess/providence/blob/develop/install/profiles/xml/ampas3.xml
https://github.com/collectiveaccess/providence/blob/develop/install/profiles/xml/idigpaleo.xml
https://github.com/collectiveaccess/providence/blob/develop/install/profiles/xml/idigpaleo.xml
https://github.com/collectiveaccess/providence/blob/develop/install/profiles/xml/idigpaleo.xml

CollectiveAccess Documentation, Release 1.8

* Profile Declaration

* Locale Definitions

– List Definitions

* System (Structure) Lists

* Control (User) Lists

– Metadata Element Set (Attribute) Definitions

* DataTypes (AttributeTypes)

* Settings

* Type Restrictions

– User Interface Definitions

– Relationship Types

• Putting It All Together

– Modifying an Existing Profile

– Building a Profile from Scratch

* Begin with the Basics

* Study other Profiles and the Wiki

* Work in Sections

– Saving a Profile

Introduction

This manual describes how to build an installation profile using the XML-based schema, or modify an existing one.
Each profile defines a number of aspects required in a working cataloguing system, including:

• Metadata Elements and Attributes. Each element definition may include the types of data an element can accept,
constraints on input, how and if it repeats, where it may be used, descriptive “help” text and more. With a few
exceptions there are no hardcoded fields in CollectiveAccess: you define what you need.

• Relationship types. Various types of catalogued items (objects, people, places, etc.) can be linked to each other
with qualified relationships. The range of valid qualifiers for a given use-case is defined in the profile. As with
metadata elements, you define only what you need for your project. You don’t have to keep irrelevant options
around just because the developers thought they were a good idea.

• User interfaces. There are no hardcoded editing user interfaces in CollectiveAccess. You can create as many
editing interfaces as you need, each with its own unique arrangement of screen and field layouts. Each interface
need only include the fields you need to edit, enabling the creation of use-specific editors for selected users
and tasks. You can define user interfaces at any time using the CollectiveAccess online editor, but it is usually
convenient (and highly recommended) to define at least a basic set of interfaces in a profile.

• List and Vocabulary Management. Lists are used extensively in CollectiveAccess as controlled vocabularies
for cataloguing, as value sets for metadata elements, and as system lists defining the allowed values for certain
application functions, such as workflow statuses and object types. While you can create new lists at any time
using the web-based list and vocabulary editor, it is usually more convenient to create you basic lists in a profile.
In addition, system lists, which are required for proper application function, and lists used by metadata elements
defined in the profile, must be defined in the profile.

1.7. Profiles 29

CollectiveAccess Documentation, Release 1.8

• Locales. The list of languages and cultures available for cataloguing purposes (e.g., the languages you’ll be
cataloguing in - not the languages or cultures used for descriptive metadata) can be defined in the profile. You
can translate help text and descriptive titles for all of the lists, metadata elements and user interfaces into any
language defined in the profile as a locale.

As you can see, almost every aspect of the cataloguing tool set can be customized in a profile. It may look terribly
complicated, but there’s no need to worry; it’s really not that difficult. And for almost every type of project there are
plenty of pre-built profiles available to use as a starting point.

This manual should be enough to allow you to create your own profile. Topics covered in the next sections include:

• A full explanation of the various sections and components that comprise a profile

• Modifying an existing profile and building profiles from scratch

• Installing and testing your profile

CollectiveAccess Basics

To work effectively with profiles it is critical that you understand the fundamental structures in the CollectiveAccess
database. While CollectiveAccess provides great flexibility in terms of the specifics of your data model - you define
your own fields, relationships and constraints - the general structure is fixed. CollectiveAccess defines fourteen types
of “items” that model the world that your collection exists in - these are referred to as the Primary Types.

Installation profiles used with CollectiveAccess version 1.0 or later are written in XML. However, the structure of the
document is very similar to that used in older profiles written in the previous syntax. As with the old syntax:

• 1 When used as a value, indicates “True” or “Yes” - will allow whatever action.

• 0 When used as a value, indicates “False” or “No” - will deny whatever action.

About Profiles

Installation profiles are “canned” configurations applied at installation time to create a working CollectiveAccess
system. A profile defines all of the metadata elements, lists, locales and relationship types used by the system, and
specifies how editing user interfaces for various items should operate. Because the values defined in a profile touch
almost every aspect of a system, profiles can only be applied at installation time with the end result being an empty
system conforming to the profile. You cannot use a profile to tweak an existing system.

Since CollectiveAccess also provides web-based tools for configuration of the same values as profiles, you may be
wondering why one would choose to define a profile, an altogether more arcane approach, over using visual tools.
There are several reasons:

• Profiles allow you to fully configure an arbitrarily complex system in one go at installation time. The web-based
tools have no provision for batch processing. You must add each metadata element, locale, relationship type,
UI specification and list item one-at-a-time. For a setup of typical complexity using the web-based tools is an
exercise in extreme tedium.

• Profiles allow you to easily and repeat-ably install the same system setup across several installations. They also
make it easy to share configurations with other users. The Configuration Library on the CollectiveAccess web
site is a venue for sharing profiles you create with the wider CollectiveAccess user community.

• Profiles provide a convenient base for extension of basic setups for specific uses. For example, several profiles
implementing popular metadata standards are included in the CollectiveAccess application package. While
these profiles can be used as-is, few serious users could use them that way. Rather they are valuable as starting
points to customized systems based upon a given standard. All one needs to do is create a new profile that
extends the chosen standard with one’s own required modifications.

30 Chapter 1. Contents

CollectiveAccess Documentation, Release 1.8

Types of Profiles in CollectiveAccess

Installation profiles for CollectiveAccess are developed for specific projects or for conformance with a metadata stan-
dard. Profiles built for projects and collections are custom tailored to meet unique requirements for that particular
institution. These profiles maybe useful if you have a similar collection or project. Some examples of project-specific
installation profiles include:

• Coney Island History Project, Brooklyn, NY, USA, (Historical Society Archive)

• New Museum of Contemporary Art, New York, NY, USA, (Multimedia Digital Archive)

• New School, New York, NY, USA, (Special Collections Archival Collection Management System)

Metadata standards based installation profiles create a generic cataloging interface that complies with established
archival, museum, and library structure standards. These profiles offer a high level of sustainability and interoperabil-
ity, but lack the custom features found in the project-specific profiles. Some examples of standards-based installation
profiles include:

• Dublin Core

• PBCore

• DarwinCore

• VRACore

• MARC

Whether you choose to use a project specific profile or a standards based profile, all can be modified. You can even
create your own unique profile from scratch if need be. All profiles share the same components. The following sections
describe these components.

Parts of a Profile

Installation Profiles consist of an opening declaration followed by five sections: Locale Definitions, List Definitions,
Metadata Element Set (Attribute) Definitions, User Interface Definitions, and Relationship Types. Two additional and
optional sections include Displays and Logins. Each of these performs a specific function within the software, and
works interdependently within the profile. It does not matter in which order you define the main sections. For the
optional sections Displays must come before Logins.

Profile Declaration

Every profile begins with its declaration that sets its name, description, and other important information. The profile
declaration for DublinCore looks like this:

<profile xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
→˓xsi:noNamespaceSchemaLocation="profile.xsd" useForConfiguration="1"
base="base" infoUrl="http://providence.collectiveaccess.org/wiki/
→˓DublinCoreInstallationProfile">
<profileName>[Standard] DublinCore</profileName>
<profileDescription>Use this profile if you want a system that is compliant
→˓with simple DublinCore</profileDescription>

The “profile.xsd” link allows a profile to inherit settings from another profile. This makes it possible to define settings
shared across several profiles in a single, more easily maintainable, file. To have a profile inherit from another, set the
“NamespaceSchemaLocation” to your .xsd base file.

1.7. Profiles 31

CollectiveAccess Documentation, Release 1.8

Locale Definitions

Locale definitions specify which languages can be used for catalogued content. Any language can be coded into a
profile by including its locale code, which is a combination of an ISO-639 country code and an ISO-3166-1 language
code (see http://wiki.collectiveaccess.org/index.php?title=Locales for more information). Note that any locale code
can be used, without restriction, for cataloguing of content. However, user interface translations (both in the Col-
lectiveAccess application and within your profile) are limited to those locales for which application translation files
have been produced. See http://wiki.collectiveaccess.org/index.php?title=Creating_a_Translalation for a current list
of application translations.

Coded for English:

<locales>
<locale lang="en" country="US">English</locale>

</locales>

Coded for English and German:

<locales>
<locale lang="en" country="US">English</locale>
<locale lang="de" country="DE">Deutsch</locale>

</locales>

Let’s take a closer look at the above code. The parent tag states the part of the profile and the child elements define the
system attributes for that part. In this case we are defining the locales, or languages, through the language and country
declarations.

List Definitions

List definitions allow you to create three types of lists: lists that define specific elements of the cataloging interface
(“system lists”), lists that define set values to control content and lists that defined controlled vocabularies that can be
used for descriptive cataloguing.

System (Structure) Lists

In CollectiveAccess, you can select a cataloging interface (See Figure 1) based on what type of object, entity, collection
or other item you are cataloging. Various system lists define these types.

INSERT FIGURE 1

For CollectiveAccess to function properly, 33 types of System Lists need to be present and defined for the Primary
Types - objects, object events, lots, lot events, entities, places, occurrences, collections, storage locations, list items,
object representations, object representation annotations and sets. All of the lists may be hierarchical, although most
tend to be single-level in most cases.

Control (User) Lists

Control lists allow you to create a field with restricted options in a cataloging record. Lists can be rendered as drop-
down menus, radio button, checklists and more. For additional information see the Attribute settings: List page. Let’s
look closely at a control list for formats in Dublin Core:

32 Chapter 1. Contents

http://wiki.collectiveaccess.org/index.php?title=Locales
http://wiki.collectiveaccess.org/index.php?title=Creating_a_Translalation

CollectiveAccess Documentation, Release 1.8

<list code="dc_format" hierarchical="0" system="0" vocabulary="0">
<labels>
<label locale="en_US">
<name>Dublin Core Format</name>

</label>
</labels>
<items>
<item idno="application" enabled="1" default="1">
<labels>
<label locale="en_US" preferred="1">
<name_singular>Application</name_singular>
<name_plural>Applications</name_plural>

</label>
</labels>

</item>
<item idno="audio" enabled="1" default="0">
<labels>
<label locale="en_US" preferred="1">
<name_singular>Audio</name_singular>
<name_plural>Audio</name_plural>

</label>
</labels>

</item>
<item idno="example" enabled="1" default="0">
<labels>
<label locale="en_US" preferred="1">
<name_singular>Example</name_singular>
<name_plural>Examples</name_plural>

</label>
</labels>

</item>
</items>

</list>

Dublin Core actually has eight format types, but for the sake of this example, we’ve limited the code to just three. Now
let’s break it down:

• <list code> - “dc_format” is the unique code name for this list. Can not match any other list codes in the profile
and can not contain spaces.

• <labels> - lets you give the list a name in defined locales, in this case English with the human readable name
Dublin Core Format. If you were writing the profile to support more than one locale you would add labels for
each locale. (Don’t worry if you don’t define labels for all allowed locales. CollectiveAccess will fall back to
other languages if a label is not available in the user’s language).

• hierarchical=”0” - controls how data will display and be used in the editing user interface. If hierarchical is set
to 1, then the list can be a multi-level hierarchy.

• system=”0” - determines if the list is one of the 33 System Lists.

• vocabulary=”0” - controls if the list is treated as a controlled vocabulary included in vocabulary term searches.

• item idno=”application” - the unique code name for this list item

• application, audio & example - are items in the list. Note that the key for each item must be unique within the
list.

• enabled, default, & labels - define how items in the list will display. If enabled is set to 0, then the item will
display but not be selectable. If default is set to 1, then the item will be the default selection in the list. Be sure

1.7. Profiles 33

CollectiveAccess Documentation, Release 1.8

to set only one item per list as default. Labels set the display label for the item. As with list preferred labels,
you can define one preferred label per locale.

Once control lists are defined, they can be used in Metadata Element Set (Attribute) Definitions to catalog interface
fields.

Metadata Element Set (Attribute) Definitions

Metadata element set definitions (element sets) are templates for the various data entry units in the cataloging interface.
Element sets can define something as simple as a text field or as complicated as a repeating multiline form with text
fields, date fields, measurements, drop-down lists and more. Thus the “sets” moniker - a single data entry unit can be
composed of any number of basic attribute types (see Attribute_Types for a full list).

Before we go further, some terminology should be defined. A metadata element set is a collection of metadata elements
that defines a single editable unit of metadata. Each element is a single value of some specific type - some text, a
number, a date, a measurement, a point on a map, etc. Thus, an element set is a collection of values.

An element set does not represent data. Rather, it defines the structure of data you may create during cataloguing.
An attribute is data structured according to an element set. Thus, you are not creating element sets when cataloguing.
Rather, you are creating attributes patterned after some element set.

Element sets are highly configurable and key to creating custom systems. While standards are in general a very good
thing, our experiences working with partner institutions have shown that successful systems need to be flexible and
extensible. Every collection is different and just about every cataloging project has at least a few unique requirements.
A configurable system permits strict adherence to standards or customization based on the needs of the project. While
this may seem a little confusing at first, it actually gives you much more control of exactly what kind of data you
would like to capture and how you would like it to display.

No specific element sets are required. You need only specify those that you need for your system; however there are a
number of components that comprise an element set definition.

A basic element set looks like this:

<metadataElement code="description" datatype="Text">
<labels>
<label locale="en_US">
<name>Description</name>
<description>An account of the resource.</description>

</label>
</labels>
<documentationUrl>http://dublincore.org/documents/dcmi-terms/#terms-

→˓description</documentationUrl>
<settings>
<setting name="usewysiwygeditor">1</setting>
<setting name="fieldWidth">70</setting>
<setting name="fieldHeight">6</setting>
<setting name="minChars">0</setting>
<setting name="maxChars">65535</setting>

</settings>
<typeRestrictions>
<restriction code="r1">
<table>ca_objects</table>
<settings>
<setting name="minAttributesPerRow">0</setting>
<setting name="maxAttributesPerRow">255</setting>
<setting name="minimumAttributeBundlesToDisplay">1</setting>

</settings>

(continues on next page)

34 Chapter 1. Contents

CollectiveAccess Documentation, Release 1.8

(continued from previous page)

</restriction>
<restriction code="r2">
<table>ca_places</table>
<settings>
<setting name="minAttributesPerRow">0</setting>
<setting name="maxAttributesPerRow">255</setting>
<setting name="minimumAttributeBundlesToDisplay">1</setting>

</settings>
</restriction>

</typeRestrictions>
</metadataElement>

DataTypes (AttributeTypes)

Each element in an element set must be declared with a specific datatype (sometimes referred to as attribute types).
These configure what kind of data will be entered into a specific element, how it will be formatted, and how it will be
stored. At this time there are 20 Attribute Types to chose from.

Lists are unique because they require reference code names defined in your list definitions. For example:

<metadataElement code="dcFormat" datatype="List" list="dc_format">
<labels>
<label locale="en_US">
<name>Format</name>
<description>The file format or physical medium or dimensions of

→˓the resource.</description>
</label>

</labels>
<documentationUrl>http://dublincore.org/documents/dcmi-terms/#terms-

→˓format</documentationUrl>

In this element set the code name is dcFormat, its datatype is List, the preferred labels are in English it is “Format”.
A description has been added and will appear as help text in the cataloging interface when the label is moused over.
The list is defined from a code name defined in the list definitions. In this particular case it’s dc_format. This links
the element set with its corresponding List in list definitions creating the necessary code for the controlled vocabulary
values. See List and Vocabulary Management for more details.

Settings

Next, the settings define how and what the data field will display. Settings vary based upon the datatype of the element.
For a text element settings include width, height, maximum and minimum characters allowed. Refer to Attribute Types
for specific settings.

If you would like to make a particular text field a required data entry point, set your minimum characters to 1. This
will require at least 1 character to be entered in the field before the element set can be saved.

When defining list elements, you can use the render setting to control whether the list is displayed as a drop-down menu
(render=select); radio buttons (render=radio_buttons); Yes/no checkbox (render=yes_no_checkboxes); a checklist
(render=checklist); type-ahead lookup (render=lookup); horizontal hierarchy browser (render=horiz_hierbrowser);
horizontal hierarchy browser with search (render=horiz_hierbrowser_with_search); or vertical hierarchy browser
(render=vert_hierbrowser). More information on List settings can be found here.

To configure the sort order of list items, you can use the defaultSort setting. This setting using numeric codes: Sort by
label = 0; Sort by rank field = 1; Sort by value field = 2; and Sort by idno = 3.

1.7. Profiles 35

CollectiveAccess Documentation, Release 1.8

Type Restrictions

Type restrictions do pretty much what they sound like they do - they restrict element sets according to types. More
precisely they restrict element sets to specific item types (objects, entities, places, occurrences, etc.) and define how
attributes can be created and displayed. It is possible to target a restriction to an item type in general or to a specific
type value for an item. For example, if you have defined an object type (in the object_types system list) of “periodical”,
you can restrict an element set to be valid for only objects that are periodicals. Attributes of that element set will appear
on editing forms only for periodicals (and whatever else it is bound to via type restrictions). Type restrictions can be
assigned to as many item types as necessary for that particular element set.

Defining a restriction by, for example, object types creates unique cataloging interfaces based on the kinds of objects
that you have in your collection. For instance, you may want to have different data entry fields for multimedia content
than you want for paper-based materials. By defining these object types in the list definitions and then linking them to
“type” under type restrictions, you can create object type-specific cataloging interfaces.

<typeRestrictions>
<restriction code="r1">

<table>ca_objects</table>
<type>moving_images</type>
<settings>

<setting name="minAttributesPerRow">0</setting>
<setting name="maxAttributesPerRow">255</setting>
<setting name="minimumAttributeBundlesToDisplay">1</setting>

</settings>
</restriction>

</typeRestrictions>

Note: Note that the item type specification - what type of item the restriction is bound to - is called “table” in the
profile code. This is because the item types are specified using the names for their tables in the CollectiveAccess
database. Specific table names are used for these Primary Types.

Each type restriction can take settings. Currently defined settings values are:

Setting Value
minAt-
tributes-
PerRow

Minimum number of attributes of this kind that must be associated with an item; set to zero to make
the attribute optional; valid value must be a positive integer.

maxAt-
tributes-
PerRow

Maximum number of attributes of this kind that can be associated with an item; set to zero or do not
set to enforce no limit; valid value must be a positive integer. Setting value to 1 will disable the repeat
attribute option in the editor screen, set to 0 or greater than one will enable the attribute repeat feature
and display the “Add” link (eg. [+]Add <attr_name>) immediately below the attribute data entry.

mini-
mumAt-
tribute-
BundlesToDis-
play

The minimum number of attribute bundles to show in an editing form. If the number of actual attributes
is less than this number then the user interface will show empty form bundles to reach this number.
This number should be less than or equal to the maximum number of attributes per row; valid values
are positive integers.

User Interface Definitions

User interface definitions configure the layout of element sets within the cataloging system. Here you can bring
together all the element sets and arrange them into a manageable cataloging interface through designation of Screens
and Bundles.

36 Chapter 1. Contents

CollectiveAccess Documentation, Release 1.8

Screens are used to group metadata attributes and create a desired cataloging workflow. Bundles are user interface
elements that can be placed on each screen. They can be editable attributes of a specific element set or editable
database fields intrinsic to a specific item type. Or they can be user interfaces that allow cataloguers to establish
relationships with other items, add and remove items from sets and manage an item’s location in a larger hierarchy.
Bundles are so named because they are essentially black-boxes that encapsulate various functionality. You don’t need
to know how they implement this functionality. You need only place them where you want them to be.

That user interfaces are just ordered arrangements of form elements and controls - bundles - makes them highly
configurable. Perhaps you want only Title and ID on the first screen, Basic info, and additional data on the second
screen, Additional info, and multimedia on the third, Media. In Figure 2 you can see the various tabs in the left
side navigation in Providence. These tabs are actually defined as screens in the user interface definitions found in
the installation profile. Note that the Summary and Log tabs seen below in Figure 2 are system screens that appear
automatically. They allow you to display data and change logs associated with the record.

Figure 2 : Left side nav.png

To organize the data fields on each screen, you must first declare which interface you are working within with a unique
code and table type. After the editor is defined, you can begin to create and fill up screens.

<userInterface code="standard_object_ui" type="ca_objects">
<labels>
<label locale="en_US">
<name>Standard object editor</name>

</label>
</labels>
<screens>
<screen idno="basic" default="1">
<labels>
<label locale="en_US">
<name>Basic info</name>

</label>
</labels>
<bundlePlacements>
<placement code="idno">
<bundle>idno</bundle>

</placement>
<placement code="preferred_labels">
<bundle>preferred_labels</bundle>
<settings>
<setting name="label" locale="en_US">Title</setting>
<setting name="add_label" locale="en_US">Add title</setting>

</settings>
</placement>
<placement code="nonpreferred_labels">
<bundle>nonpreferred_labels</bundle>
<settings>
<setting name="label" locale="en_US">Alternate titles</

→˓setting>
<setting name="add_label" locale="en_US">Add name</setting>

</settings>
</placement>
<placement code="ca_attribute_date">
<bundle>ca_attribute_date</bundle>

</placement>
</bundlePlacements>

</screen>

Note: Note that each entry in the bundle list is actually comprised of several parts: a unique code as key and an

1.7. Profiles 37

CollectiveAccess Documentation, Release 1.8

associative array as value. At a minimum, the value array must define a bundle using the ‘bundle’ key and a valid
bundle name as the value. Depending upon the bundle being listed, other settings can be passed as well.

The list of valid bundles varies according to the type of item being edited. The object editor supports certain bundles
that the entities editor does not. All editors support attribute bundles. To derive the bundle name for a specific
element_set simply preface the element code with ca_attribute_ For example, the element_set creation_date would
have a bundle name of ca_attribute_creation_date. The bundle names for various intrinsic database fields are the field
names themselves. These Intrinsic Bundles names for other user interface elements are unique to the Primary Types.

Each bundle you add to a user interface can take optional settings depending on the bundle type. A full list of these
settings is defined on the Bundles page.

The label and add_label allow you to override the default text labels in the user interface that are output above a bundle
and on the add button respectively. Each of these settings is an associative array with locale codes as keys and the
label text to use as values. Including both English and German display text translations would look like this:

<placement code="ca_attribute_description">
<bundle>ca_attribute_description</bundle>

<settings>
<setting name="label" locale="en_US">Narrative description</

→˓setting>
<setting name="label" locale="de_DE">Beschriebung</setting>
<setting name="add_label" locale="en_US">Add another description</

→˓setting>
<setting name="add_label" locale="de_DE">Addieren einen

→˓Beschriebung</setting>
</settings>

</placement>

The restrict_to_type setting applies only to bundles that create relationships between items - bundles like ca_objects
and ca_entities. By default these bundles will allow linking to an item of any type - for example, by default ca_entities
will let you link to an individual, and organization or any other type of entity. restrict_to_type does just what it says,
which is limit the bundle such that it allows linking only to a specific type. The value you set restrict_to_type to should
be the identifier (idno field value) of the type you wish to restrict to.

For example, if you have an entity type of individual with its list item idno set to ind, then the bundle specification for
a ca_entities linking control that only allows linking to individuals would look like this:

<bundle>ca_entities</bundle>
<settings>
<setting name="restrict_to_types">ind</setting>
</settings>

Additionally, the restrtict_to_relationship_types setting applies only to bundles that create relationships between items
- bundles like ca_objects and ca_entities, but need to be linked to a specific relationship type. By default, when you
create a relationship between any two records, that relationship can be defined through Relationship Types (see section
3.2.6). Furthermore, those relationship types can have hierarchical subtypes and so on. This is where being able to
restrict to a relationship type is useful.

For example, let’s say you have entities relationship types that are creator, contributor, and publisher. These are fur-
ther defined by another level of sub-types, so you can further define creator as artist, author, director, etc; contributor
as assistant director, production assistant, etc; and publisher as copyright holder, distributor, etc. You can use re-
strict_to_relationship_type to create a relationship field limited only to that type. To create a relationship field that
would only be limited to creator types, it would look like this:

<placement code="ca_creator">
<bundle>ca_entities</bundle>

(continues on next page)

38 Chapter 1. Contents

CollectiveAccess Documentation, Release 1.8

(continued from previous page)

<settings>
<setting name="restrict_to_relationship_types">creator</setting>
<setting name="label" locale="en_US">Creators & contributors</setting>
<setting name="add_label" locale="en_US">Add creator & contributor</

→˓setting>
</settings>

</placement>

As of version 1.7 you can restrict display of bundle placements on a screen depending upon the type of the record being
edited. For example, you can set up a bundle that appears when editing objects of type “book” but not type “video”.
By default a bundle will display for all types. To restrict it, set the typeRestrictions attribute in the <placement> tag to
a comma-separated list of type codes. For example:

<placement code="ca_creator" typeRestrictions="book,document">...</placement>

Relationship Types

CollectiveAccess creates relationships between records that are qualified by descriptive types. These types for Rela-
tionships create the necessary language to describe relationships between items in the cataloging interface, from the
point of view of either item. For example an entity can be a “creator” of an object, and an object can be “created” by
an entity. Each possible relationship in CollectiveAccess has its own list of relationship types. You must define at least
one type for each relationship. Relationships with no defined types will not be usable.

When specifying relationship types in a profile, you must specify to which relationship each type belongs. Each has a
unique name, which is actually the name of the underlying database table that stores the relationship data. The naming
of these tables follows a simple pattern: the names of the two items related connected by “_x_” and prefixed with ca_.
Thus the name of the object to entity relationship is ca_objects_x_entities.

However, it’s not quite so simple; you can’t just guess the names without resorting to a list. The order of the two item
names matters, but does not follow a clearly predictable pattern. ca_objects_x_entities works but ca_entities_x_objects
doesn’t. Therefore, the naming Relationships is critical.

Relationships manifest themselves in the cataloging interface as repeating bundles that consist of:

• A relationship type drop-down to qualify the relationship

• An autocompleting lookup into the related authority

• An optional date range qualifier

• Optional attributes (generally text, but could include other types of data)

• Optional reification - relationships between the relationship on other authority items

Note that the date range qualifier, optional attributes and reification are not implemented in the user interface yet.
Relationship types bundles are typically expressed like this.

<relationshipTable name="ca_objects_x_entities">
<types>
<type code="creator" default="1" rank="1">
<labels>
<label locale="en_US">
<typename>created by</typename>
<typename_reverse>is creator</typename_reverse>

</label>
</labels>
<subTypeLeft> </subTypeLeft>

(continues on next page)

1.7. Profiles 39

CollectiveAccess Documentation, Release 1.8

(continued from previous page)

<subTypeRight/>
</type>
<type code="publisher" default="0" rank="3">
<labels>
<label locale="en_US">
<typename>published by</typename>
<typename_reverse>is publisher</typename_reverse>

</label>
</labels>
<subTypeLeft> </subTypeLeft>
<subTypeRight/>

</type>
<type code="contributor" default="0" rank="2">
<labels>
<label locale="en_US">
<typename>contributed by</typename>
<typename_reverse>is contributor</typename_reverse>

</label>
</labels>
<subTypeLeft> </subTypeLeft>
<subTypeRight/>

</type>

In this example the relationship types are ordered as follows: creator, contributor, publisher. This order is established
by the rank setting in the type tag.

Putting It All Together

To briefly summarize the components of installation profiles:

• Locales define languages for translations and these codes are used throughout the profile under “pre-
ferred_labels”

• List Definitions create system lists, user lists and vocabularies. - System Lists determine the types of objects,
entities, places, etc., that will display in your system and their sources. System types can also be used to restrict
metadata element (attribute) sets to a specific type. - User Lists create simple controlled vocabularies. User lists
are used in metadata element (attribute) sets to reference a specific list of types when the DataType “List” is
used. - Vocabularies create multi-level controlled vocabularies, the terms of which can be related to other items
for descriptive cataloguing.

• Metadata Element (Attribute) Sets configure the look and function of data entry fields in your cataloging system.
They must be defined by one of several AttributeTypes. Metadata Element (Attribute) Sets are referenced in
Bundles to design Screens in User Interface Definitions.

• User Interface Definitions layout the cataloging navigation in Providence. These are divided into one or more
screens, each of which contains one or more bundles. - Bundles are user interface elements that can be placed on
each screen. They can be editable attributes of a specific metadata element set or editable database fields intrinsic
to a specific item type. Or they can be user interface elements that allow cataloguers to establish relationships
with other items, add and remove items from sets and manage an item’s location in a larger hierarchy.

• Relationships create the relational structure and language between items. - Relationship types qualify relation-
ships

40 Chapter 1. Contents

CollectiveAccess Documentation, Release 1.8

Modifying an Existing Profile

The simplest way to create a custom cataloging interface is to modify an existing profile. You will find in the Con-
figuration Library at CollectiveAccess.org profiles implementing many different metadata standards and suitable for a
wide range of projects. Select the profile that most closely matches your collection or cataloging project. Review the
documentation on that profile and determine what changes, if any, need to be made.

Next, map the required changes to the five profile sections. Do you need a translation? Then set up a locale. A new
list of media formats? Set up a new list definition. Create a new element set for that list and then add it to a bundle in
user interface definitions.

Modifying an existing profile will help to ensure that all the necessary components for a functioning installation profile
are present and working. It also saves a whole lot of typing!

Building a Profile from Scratch

It is highly recommended that you modify an existing profile, but if for some reason you find that none of the existing
profiles meets the needs of your project then you may need to build a new profile from scratch.

Begin with the Basics

Before coding a new profile, it’s very important to think about how you want your catalog to function. Ask yourself
these questions:

• What kind of objects are in my collection?

• What information do I need to organize and find these objects?

• How do I want this information be structured?

Try creating a spreadsheet with all the elements (data entry fields) you want to have in your system. Include a definition
for each element, how it will be used, if any special functions are needed (controlled vocabularies, dropdown menus,
etc), if the element will be required, and any other details you think are necessary to note.

Study other Profiles and the Wiki

Another extremely helpful exercise to go through before coding a new profile is to closely analyze existing profiles
for their layout, patterns, and format. The xml files for profiles available in your CollectiveAccess installation can be
viewed at:

install/profiles/xml/nameofprofile.xml

This wiki is also a great resource. It may be helpful to review more in-depth technical documentation about the topics
discussed in this introductory guide.

Work in Sections

There are 5 sections that open and close with every part of the profile (i.e. <locales>, <elementSets>, etc.) and each
uses aspects from another section or builds upon the next section. Begin with the first section, and move through one
part at time taking note of code names and formatting as you go along. Working slowly and carefully will pay off later
during installation and testing.

1.7. Profiles 41

CollectiveAccess Documentation, Release 1.8

Saving a Profile

Save your file in:

install/profiles/xml

Once saved, your new profile should display in the dropdown menu on the installation webpage.

1.7.4 Definition and Purpose of a Profile

A CollectiveAccess installation profile is an XML document that tells the software how to set up various aspects of
Providence at the time of its installation. The profile enables you to configure nearly every aspect of the various
cataloging interfaces in CollectiveAccess before you begin using the system. After installation, you can easily make
additional changes using the tools in the “Manage” menu, but it’s usually more efficient to set up your installation in
such a way that it meets your requirements from the start. Installation profiles:

• Generate and define controlled vocabularies

• Define and label metadata fields

• Specify the method of metadata entry (e.g. a text entry field or a drop-down menu)

• Bundle the fields together for easy metadata entry

• Combine metadata elements on different screens for workflow management

• Delineate and describe the relationships between all of the various types of objects, entities, occurrences, lots,
sets, etc. in your system

• Set the logins for different user types

• Configure the display of search results and data exports.

• Create standards-compliant set-ups

Installation profiles “live” in the ‘install/profiles/xml’ folder located in the directory where you loaded the software
on your computer or server. When you first log in after installing CollectiveAccess, you’ll be asked to select one
of the saved installation profiles in the “XML” folder, which will then be used to complete the installation process.
In Providence, many pre-defined profiles are available, ranging from standard schemata (see Metadata Standards) to
custom set ups created for and by organizations world wide (see Configuration Library).

1.7.5 Creating a Profile

Profiles are written using an xml-based syntax. Typically no profile is created from scratch, but rather users modify
existing profiles to meet their needs.

1.7.6 Troubleshooting Profiles

Installation profiles are often long and complex text documents. It’s easy to make mistakes that cause the installation
process to fail or deviate from requirements. You can make errors much less likely by validating your profile against
the profile syntax XML schema. The schema is located in install/profiles/xml/profile.xsd. Simply copy the schema to
the same directory as the profile you are editing and use a validating XML editor such as OxygenXML. The editor
will highlight mistakes as you type and point you to the location of the errors.

42 Chapter 1. Contents

https://github.com/collectiveaccess/providence/tree/master/install/profiles/xml

CollectiveAccess Documentation, Release 1.8

Tip: The CollectiveAccess installer will validate your profile against the schema before proceeding with installation,
so if a profile doesn’t validate during editing it won’t be accepted by the installer. The bottom line: always make sure
your profile validates!

1.7.7 Changing the installation profile of an existing system

An oft-asked question is “I installed my system using installation profile X. How can I now change it to Y?” The answer
is you can’t. Installation profiles are simply collections of rules (or templates, if you prefer) for the installer to follow
when setting up a new system. Once the installation process is complete the profile ceases to play a role. You can
continue to modify the configuration of your system using the web-based configuration tools, creating an installation
different from the profile that originally created it. If you really need to change an existing system to conform to a
new profile you have two choices: (1) modify the existing system by hand using the web-based configuration tools to
match or (2) reinstall from scratch with the desired profile. In the latter case you will lose all existing data, of course.

1.8 Primary Tables and Intrinsic Fields

• Objects (ca_objects)

• Object Lots (ca_object_lots)

• Entities (ca_entities)

• Places (ca_places)

• Occurrences (ca_occurrences)

• Collections (ca_collections)

• Storage Locations (ca_storage_locations)

• Loans (ca_loans)

• Movements (ca_movements)

• Object Representations (ca_object_representations)

• Tours (ca_tours)

• Tour Stops (ca_tour_stops)

• Label Tables

• Label Table Intrinsics

• Special Intrinsics

CollectiveAccess is structured around several primary tables, with editors that can be enabled (or disabled) depending
on project requirements. Each primary table has intrinsic bundles and its own set of preferred and non-preferred labels
bundles. Distinct user interfaces can be configured for each table, and within that, a single table can have multiple user
interfaces restricted by Type (see Types).

Editors that are not relevant for your system (you don’t catalogue places for example) can be disabled in the configu-
ration file app.conf, by setting the various *_disable directives below to a non-zero value

Here’s how it looks in app.conf:

1.8. Primary Tables and Intrinsic Fields 43

CollectiveAccess Documentation, Release 1.8

Editor "disable" switches

ca_objects_disable = 0
ca_entities_disable = 0
ca_places_disable = 0
ca_occurrences_disable = 0
ca_collections_disable = 0
ca_object_lots_disable = 0
ca_storage_locations_disable = 0
ca_loans_disable = 0
ca_movements_disable = 1
ca_tours_disable = 1
ca_tour_stops_disable = 1
ca_object_representations_disable = 1

1.8.1 Objects (ca_objects)

Object records represent items or assets in a collection, typically the physical or born-digital items being managed.
Every object record has a “type” that determines which fields are relevant for it. The list of types available in your
system can be customized to match your specific cataloging requirements.

44 Chapter 1. Contents

CollectiveAccess Documentation, Release 1.8

Object intrinsics (ca_objects)

Name Code Description Mandatory?Default
Identifier idno The object identifier. Must follow policy de-

fined in configured numbering policy if app.conf
setting require_valid_id_number_for_ca_objects
is set. Must be unique if app.conf setting al-
low_duplicate_id_number_for_ca_objects is not
set.

Depends
upon
num-
ber-
ing
pol-
icy

Type type_id A value from the object_types list indicating the
type of the record. Stored as an internally gener-
ated numeric item_id. When setting this value in
a data import or via an API call the item identifier
may be used.

Parent parent_id Reference to parent record. Will be null if no par-
ent is defined. When setting this value in a data
import or via an API call the identifier of the par-
ent object may be used.

No null

Access access Determines visibility of record in public-facing
applications such as Pawtucket. Values are de-
fined in the access_statuses list. Typically the list
includes values for “public” and “private” visibil-
ity. For historical reasons the value stored in the
intrinsic is the list item’s value field, not its iden-
tifer or label. By convention “0” is interpreted as
private and “1” as public access, although this can
be modified or expanded in app.conf if required.

Yes 0

Status status Records the general cataloguing workflow status
of the record. Values are defined in the work-
flow_statuses list. For historical reasons the value
stored in the intrinsic is the list item’s value field,
not its identifer or label. Unlike access values,
statuses have no functional impact on a record.
They are merely informations and intended to
provide a simple, straightforward way to track the
cataloguing process.

Yes 0

Lot lot_id A reference to the lot record (ca_object_lots) of
which the object is a part. May be null if the ob-
ject is not part of a lot. Note that an object may be
part of only one lot. The raw database value con-
tained lot_id is an internally generated numeric
lot_id. However, when setting this intrinsic via
an import mapping or API call you may also use
the lot’s identifier.

No

Source source_id A value from the object_sources list indicating
the original source of the object. This value is
sometimes used to broadly distinguish different
classes of objects. When setting this value in a
data import or via an API call the item identifier
may be used.

No

Deaccessioned? is_deaccessioned A flag indicating whether the object is deacces-
sioned. Will be 1 when deaccessioned or 0 (the
default) when not deaccessioned.

Yes 0

Date of deacces-
sion

deaccession_date The date of deaccession. If unknown the value
will be null. The date is stored as an historic dat-
erange and may be any valid historic date (Eg. it
is not limited to post-1970 dates).

No

Date of disposal deaccession_disposal_date The date of disposal of the object. This is typ-
ically a date after deaccession. If unknown the
value will be null. The date is stored as an his-
toric daterange and may be any valid historic date
(Eg. it is not limited to post-1970 dates).

No

Deaccession
notes

deaccession_notes Any notes regarding the deaccession process.
Limited to 65535 characters maximum length.

No

Deaccession
type

deaccession_type_id A value from the object_deaccession_types list
indicated type of deaccession. Examples of deac-
cession types might include “Sold”, “Destroyed”
and “Transferred”. When setting this value in a
data import or via an API call the item identifier
may be used.

No

Acquisition type acquisition_type_id A value from the object_acq_types list indicating
how the object was acquired. When setting this
value in a data import or via an API call the item
identifier may be used.

No

Accession status item_status_id A value from the object_statuses list indicating
the accession status of the object. Accession sta-
tus values might include “accessioned”, “pending
accession”, “non-accessioned item”, etc. When
setting this value in a data import or via an API
call the item identifier may be used.

No

Extent extent The numeric extent. Must a be a whole, positive
number. Default is 0.

Yes 0

Units of extent extent_units Units of extent value, as text. Yes
Library circula-
tion status

circulation_status_id A value from the object_circulation_statuses list
indicating the circulation status of the object, as
set by the library check-in/out system. When set-
ting this value in a data import or via an API call
the item identifier may be used.

No

Submitted by
user

submission_user_id For records submitted via the Pawtucket “con-
tribute” form interface. The user who submitted
the record.

No

Submission
group

submission_group_id For records submitted via the Pawtucket “con-
tribute” form interface. The group of the user that
submitted the record.

No

Submission sta-
tus

submission_status_id For records submitted via the Pawtucket “con-
tribute” form interface. A value from the submis-
sion_statuses list indicating the review status of
the submitted record. When setting this value in
a data import or via an API call the item identifier
may be used.

No

Submission
form

submission_via_form For records submitted via the Pawtucket “con-
tribute” form interface. The identifying code of
the form used to submit the record.

No

View count view_count Number of times record has been viewed in Paw-
tucket front-end

No 0

Home location home_location_value The home location of the object, format-
ted using the display template defined by
the app.conf “home_location_display_template”
directive an evaluated relative to the home
ca_storage_locations record. If no template is
defined in app.conf, the full hierarchical path of
the home location is returned. The template may
be overriden by passing a “display_template” tag
option.

No

1.8. Primary Tables and Intrinsic Fields 45

CollectiveAccess Documentation, Release 1.8

Note: ca_objects.preferred_labels.name is used by data mappings and display templates to reference the intrinsic name
field in the ca_object_labels table

1.8.2 Object Lots (ca_object_lots)

Lots record the accession or acquisition of one or more objects. Lots are commonly used by collecting institutions
who may accession more than one unique item per accession. Registrarial information, such as the Deed of Gift, may
be recorded in a lot record while cataloging for each accessioned object remains at the object level.

46 Chapter 1. Contents

CollectiveAccess Documentation, Release 1.8

Object lot intrinsics (ca_object_lots)

Name Code Description Mandatory?Default
Identifier idno_stub The lot identifier. Must follow pol-

icy defined in configured number-
ing policy if app.conf setting re-
quire_valid_id_number_for_ca_object_lots is
set. Must be unique if app.conf setting al-
low_duplicate_id_number_for_ca_object_lots
is not set.

Depends
upon
num-
bering
policy

Type type_id A value from the object_lot_types list indicat-
ing the type of the record. Stored as an inter-
nally generated numeric item_id. When set-
ting this value in a data import or via an API
call the item identifier may be used.

Yes null

Parent parent_id Reference to parent record. Will be null if no
parent is defined. When setting this value in a
data import or via an API call the identifier of
the parent lot may be used.

No null

Access access Determines visibility of record in public-
facing applications such as Pawtucket. Values
are defined in the access_statuses list. Typi-
cally the list includes values for “public” and
“private” visibility. For historical reasons the
value stored in the intrinsic is the list item’s
value field, not its identifer or label. By con-
vention “0” is interpreted as private and “1” as
public access, although this can be modified or
expanded in app.conf if required.

Yes 0

Status status Records the general cataloguing workflow sta-
tus of the record. Values are defined in the
workflow_statuses list. For historical reasons
the value stored in the intrinsic is the list item’s
value field, not its identifer or label. Unlike ac-
cess values, statuses have no functional impact
on a record. They are merely informations and
intended to provide a simple, straightforward
way to track the cataloguing process.

Yes 0

Source source_id A value from the object_lot_sources list indi-
cating the original source of the lot. This value
is sometimes used to broadly distinguish dif-
ferent classes of lots. When setting this value
in a data import or via an API call the item
identifier may be used.

No

Accession status lot_status_id A value from the object_lot_statuses list
indicating the accession status of the lot.
Accession status values might include
“accessioned”, “pending accession”, “non-
accessioned item”, etc. When setting this
value in a data import or via an API call the
item identifier may be used.

No

Extent extent The numeric extent. Must a be a whole, posi-
tive number. Default is 0.

Yes 0

Units of extent extent_units Units of extent value, as text. Yes
Submitted by user submission_user_idFor records submitted via the Pawtucket “con-

tribute” form interface. The user who submit-
ted the record.

No

Submission group submission_group_idFor records submitted via the Pawtucket “con-
tribute” form interface. The group of the user
that submitted the record.

No

Submission status submission_status_idFor records submitted via the Pawtucket “con-
tribute” form interface. A value from the sub-
mission_statuses list indicating the review sta-
tus of the submitted record.

No

Submission form submission_via_formFor records submitted via the Pawtucket “con-
tribute” form interface. The identifying code
of the form used to submit the record.

No

View count view_count Number of times record has been viewed in
Pawtucket front-end

No 0

1.8. Primary Tables and Intrinsic Fields 47

CollectiveAccess Documentation, Release 1.8

Note: ca_object_lots.preferred_labels.name is used by data mappings and display templates to reference the intrinsic
name field in the ca_object_lot_labels table

1.8.3 Entities (ca_entities)

Entity records represent specific people and organizations. Relationships can be created between entity and object
records (or any other records in any other table) with fully customizable relationship types. For example, an entity
record for an individual could be related to an object record as the creator of the object, or the photographer, donor,
publisher, performer, etc.

48 Chapter 1. Contents

CollectiveAccess Documentation, Release 1.8

Entity intrinsics (ca_entities)

Name Code Description Mandatory?Default
Identifier idno The entity identifier. Must follow

policy defined in configured num-
bering policy if app.conf setting re-
quire_valid_id_number_for_ca_entities is
set. Must be unique if app.conf setting
allow_duplicate_id_number_for_ca_entities
is not set.

Depends
upon
num-
bering
policy

Type type_id A value from the entity_types list indicating
the type of the record. Stored as an internally
generated numeric item_id. When setting this
value in a data import or via an API call the
item identifier may be used.

Yes null

Parent parent_id Reference to parent record. Will be null if no
parent is defined. When setting this value in a
data import or via an API call the identifier of
the parent entity may be used.

No null

Access access Determines visibility of record in public-
facing applications such as Pawtucket. Values
are defined in the access_statuses list. Typi-
cally the list includes values for “public” and
“private” visibility. For historical reasons the
value stored in the intrinsic is the list item’s
value field, not its identifer or label. By con-
vention “0” is interpreted as private and “1” as
public access, although this can be modified or
expanded in app.conf if required.

Yes 0

Status status Records the general cataloguing workflow sta-
tus of the record. Values are defined in the
workflow_statuses list. For historical reasons
the value stored in the intrinsic is the list item’s
value field, not its identifer or label. Unlike ac-
cess values, statuses have no functional impact
on a record. They are merely informations and
intended to provide a simple, straightforward
way to track the cataloguing process.

Yes 0

Lifespan lifespan The life dates of the entity expressed as an his-
toric daterange.

No

Source source_id A value from the entity_sources list indicating
the original source of the entity. This value is
sometimes used to broadly distinguish differ-
ent classes of entities. When setting this value
in a data import or via an API call the item
identifier may be used.

No

Submitted by user submission_user_idFor records submitted via the Pawtucket “con-
tribute” form interface. The user who submit-
ted the record.

No

Submission group submission_group_idFor records submitted via the Pawtucket “con-
tribute” form interface. The group of the user
that submitted the record.

No

Submission status submission_status_idFor records submitted via the Pawtucket “con-
tribute” form interface. A value from the sub-
mission_statuses list indicating the review sta-
tus of the submitted record.

No

Submission form submission_via_formFor records submitted via the Pawtucket “con-
tribute” form interface. The identifying code
of the form used to submit the record.

No

View count view_count Number of times record has been viewed in
Pawtucket front-end

No 0

1.8. Primary Tables and Intrinsic Fields 49

CollectiveAccess Documentation, Release 1.8

Note: ca_entities.preferred_labels.displayname is used by data mappings and display templates to reference the in-
trinsic displayname field in the ca_entity_labels table. See below ca_entity_labels name fields for all ca_entity_labels
name fields.

1.8.4 Places (ca_places)

Place records represent physical locations, geographic or otherwise. Places are inherently hierarchical allowing you
to nest more specific place records within broader ones. As with entities, places can be related records in other ta-
bles. Places are typically used to model location authorities specific to your system. For cataloguing of common
geographical place names consider using CollectiveAccess’ built-in support for GoogleMaps, OpenStreetMap, GeoN-
ames and/or the Getty Thesaurus of Geographic Names (TGN).

50 Chapter 1. Contents

CollectiveAccess Documentation, Release 1.8

Place intrinsics (ca_places)

Name Code Description Mandatory?Default
Identifier idno The place identifier. Must follow

policy defined in configured num-
bering policy if app.conf setting re-
quire_valid_id_number_for_ca_places is
set. Must be unique if app.conf setting
allow_duplicate_id_number_for_ca_places is
not set.

Depends
upon
num-
bering
policy

Type type_id A value from the place_types list indicating
the type of the record. Stored as an internally
generated numeric item_id. When setting this
value in a data import or via an API call the
item identifier may be used.

Yes null

Parent parent_id Reference to parent record. Will be null if no
parent is defined. When setting this value in a
data import or via an API call the identifier of
the parent place may be used.

No null

Access access Determines visibility of record in public-
facing applications such as Pawtucket. Values
are defined in the access_statuses list. Typi-
cally the list includes values for “public” and
“private” visibility. For historical reasons the
value stored in the intrinsic is the list item’s
value field, not its identifer or label. By con-
vention “0” is interpreted as private and “1” as
public access, although this can be modified or
expanded in app.conf if required.

Yes 0

Status status Records the general cataloguing workflow sta-
tus of the record. Values are defined in the
workflow_statuses list. For historical reasons
the value stored in the intrinsic is the list item’s
value field, not its identifer or label. Unlike ac-
cess values, statuses have no functional impact
on a record. They are merely informations and
intended to provide a simple, straightforward
way to track the cataloguing process.

Yes 0

Lifespan lifespan The life dates of the place expressed as an his-
toric daterange.

No

Source source_id A value from the places_sources list indicating
the original source of the place. This value is
sometimes used to broadly distinguish differ-
ent classes of places. When setting this value
in a data import or via an API call the item
identifier may be used.

No

Floorplan floorplan Uploaded image depicting floor plan of place.
Used as the base layer in the object-place floor-
plan user interface.

No

Submitted by user submission_user_idFor records submitted via the Pawtucket “con-
tribute” form interface. The user who submit-
ted the record.

No

Submission group submission_group_idFor records submitted via the Pawtucket “con-
tribute” form interface. The group of the user
that submitted the record.

No

Submission status submission_status_idFor records submitted via the Pawtucket “con-
tribute” form interface. A value from the sub-
mission_statuses list indicating the review sta-
tus of the submitted record.

No

Submission form submission_via_formFor records submitted via the Pawtucket “con-
tribute” form interface. The identifying code
of the form used to submit the record.

No

View count view_count Number of times record has been viewed in
Pawtucket front-end

No 0

1.8. Primary Tables and Intrinsic Fields 51

CollectiveAccess Documentation, Release 1.8

Note: ca_places.preferred_labels.name is used by data mappings and display templates to reference the intrinsic name
field in the ca_place_labels table

1.8.5 Occurrences (ca_occurrences)

Occurrences are used to represent temporal concepts such as events, exhibition, productions or citations.

52 Chapter 1. Contents

CollectiveAccess Documentation, Release 1.8

Occurrence intrinsics (ca_occurrences)

Name Code Description Mandatory?Default
Identifier idno The occurrence identifier. Must fol-

low policy defined in configured num-
bering policy if app.conf setting re-
quire_valid_id_number_for_ca_occurrences
is set. Must be unique if app.conf setting al-
low_duplicate_id_number_for_ca_occurrences
is not set.

Depends
upon
num-
bering
policy

Type type_id A value from the occurrence_types list indicat-
ing the type of the record. Stored as an inter-
nally generated numeric item_id. When set-
ting this value in a data import or via an API
call the item identifier may be used.

Yes null

Parent parent_id Reference to parent record. Will be null if no
parent is defined. When setting this value in a
data import or via an API call the identifier of
the parent occurrence may be used.

No null

Access access Determines visibility of record in public-
facing applications such as Pawtucket. Values
are defined in the access_statuses list. Typi-
cally the list includes values for “public” and
“private” visibility. For historical reasons the
value stored in the intrinsic is the list item’s
value field, not its identifer or label. By con-
vention “0” is interpreted as private and “1” as
public access, although this can be modified or
expanded in app.conf if required.

Yes 0

Status status Records the general cataloguing workflow sta-
tus of the record. Values are defined in the
workflow_statuses list. For historical reasons
the value stored in the intrinsic is the list item’s
value field, not its identifer or label. Unlike ac-
cess values, statuses have no functional impact
on a record. They are merely informations and
intended to provide a simple, straightforward
way to track the cataloguing process.

Yes 0

Source source_id A value from the occurrence_sources list in-
dicating the original source of the occurrence.
This value is sometimes used to broadly distin-
guish different classes of occurrences. When
setting this value in a data import or via an API
call the item identifier may be used.

No

Submitted by user submission_user_idFor records submitted via the Pawtucket “con-
tribute” form interface. The user who submit-
ted the record.

No

Submission group submission_group_idFor records submitted via the Pawtucket “con-
tribute” form interface. The group of the user
that submitted the record.

No

Submission status submission_status_idFor records submitted via the Pawtucket “con-
tribute” form interface. A value from the sub-
mission_statuses list indicating the review sta-
tus of the submitted record.

No

Submission form submission_via_formFor records submitted via the Pawtucket “con-
tribute” form interface. The identifying code
of the form used to submit the record.

No

View count view_count Number of times record has been viewed in
Pawtucket front-end

No 0

1.8. Primary Tables and Intrinsic Fields 53

CollectiveAccess Documentation, Release 1.8

Note: ca_occurrences.preferred_labels.name is used by data mappings and display templates to reference the intrinsic
name field in the ca_occurrence_labels table

1.8.6 Collections (ca_collections)

Collections represent significant groupings of objects. They may refer to physical collections, symbolic collections of
items associated by some criteria, or any other grouping. Collection records are often used to manage formal archival
processing and the creation of finding aids, by configuring records to be compliant with the Describing Archives
(DACS) content standard.

Note: ca_collections.preferred_labels.name is used by data mappings and display templates to reference the intrinsic
name field in the ca_collection_labels table

54 Chapter 1. Contents

CollectiveAccess Documentation, Release 1.8

Collection intrinsics (ca_collections)

Name Code Description Mandatory?Default
Identifier idno The collection identifier. Must fol-

low policy defined in configured num-
bering policy if app.conf setting re-
quire_valid_id_number_for_ca_collections is
set. Must be unique if app.conf setting al-
low_duplicate_id_number_for_ca_collections
is not set.

Depends
upon
num-
bering
policy

Type type_id A value from the collection_types list indicat-
ing the type of the record. Stored as an inter-
nally generated numeric item_id. When set-
ting this value in a data import or via an API
call the item identifier may be used.

Yes null

Parent parent_id Reference to parent record. Will be null if no
parent is defined. When setting this value in a
data import or via an API call the identifier of
the parent collection may be used.

No null

Access access Determines visibility of record in public-
facing applications such as Pawtucket. Values
are defined in the access_statuses list. Typi-
cally the list includes values for “public” and
“private” visibility. For historical reasons the
value stored in the intrinsic is the list item’s
value field, not its identifer or label. By con-
vention “0” is interpreted as private and “1” as
public access, although this can be modified or
expanded in app.conf if required.

Yes 0

Status status Records the general cataloguing workflow sta-
tus of the record. Values are defined in the
workflow_statuses list. For historical reasons
the value stored in the intrinsic is the list item’s
value field, not its identifer or label. Unlike ac-
cess values, statuses have no functional impact
on a record. They are merely informations and
intended to provide a simple, straightforward
way to track the cataloguing process.

Yes 0

Source source_id A value from the collection_sources list in-
dicating the original source of the collection.
This value is sometimes used to broadly dis-
tinguish different classes of collections. When
setting this value in a data import or via an API
call the item identifier may be used.

No

Submitted by user submission_user_idFor records submitted via the Pawtucket “con-
tribute” form interface. The user who submit-
ted the record.

No

Submission group submission_group_idFor records submitted via the Pawtucket “con-
tribute” form interface. The group of the user
that submitted the record.

No

Submission status submission_status_idFor records submitted via the Pawtucket “con-
tribute” form interface. A value from the sub-
mission_statuses list indicating the review sta-
tus of the submitted record.

No

Submission form submission_via_formFor records submitted via the Pawtucket “con-
tribute” form interface. The identifying code
of the form used to submit the record.

No

View count view_count Number of times record has been viewed in
Pawtucket front-end

No 0

1.8. Primary Tables and Intrinsic Fields 55

CollectiveAccess Documentation, Release 1.8

1.8.7 Storage Locations (ca_storage_locations)

Storage location records represent physical locations where objects may be located, displayed or stored. Like place
records, storage locations are hierarchical and may be nested to allow notation location at various levels of specificity
(building, room, cabinet, drawer, etc.). As with the other primary tables, each storage location may have arbitrarily
rich cataloguing, including access restrictions, geographical coordinates, keywords and other information.

56 Chapter 1. Contents

CollectiveAccess Documentation, Release 1.8

Storage location intrinsics (ca_storage_locations)

Name Code Description Mandatory?Default
Identifier idno The storage location identifier. Must

follow policy defined in configured
numbering policy if app.conf setting re-
quire_valid_id_number_for_ca_storage_locations
is set. Must be unique if app.conf setting al-
low_duplicate_id_number_for_ca_storage_locations
is not set.

Depends
upon
num-
bering
policy

Type type_id A value from the storage_location_types list
indicating the type of the record. Stored as an
internally generated numeric item_id. When
setting this value in a data import or via an API
call the item identifier may be used.

Yes null

Parent parent_id Reference to parent record. Will be null if no
parent is defined. When setting this value in a
data import or via an API call the identifier of
the parent storage location may be used.

No null

Access access Determines visibility of record in public-
facing applications such as Pawtucket. Values
are defined in the access_statuses list. Typi-
cally the list includes values for “public” and
“private” visibility. For historical reasons the
value stored in the intrinsic is the list item’s
value field, not its identifer or label. By con-
vention “0” is interpreted as private and “1” as
public access, although this can be modified or
expanded in app.conf if required.

Yes 0

Status status Records the general cataloguing workflow sta-
tus of the record. Values are defined in the
workflow_statuses list. For historical reasons
the value stored in the intrinsic is the list item’s
value field, not its identifer or label. Unlike ac-
cess values, statuses have no functional impact
on a record. They are merely informations and
intended to provide a simple, straightforward
way to track the cataloguing process.

Yes 0

Source source_id A value from the storage_location_sources list
indicating the original source of the storage
location. This value is sometimes used to
broadly distinguish different classes of storage
locations. When setting this value in a data im-
port or via an API call the item identifier may
be used.

No

Icon icon Icon image to display for storage location. No
Color color Highlight color for storage location in hex for-

mat.
No

Is enabled? is_enabled Flag indicating whether storage location is
available for use (value set to 1) or not avail-
able (value is 0).

Yes 0

Submitted by user submission_user_idFor records submitted via the Pawtucket “con-
tribute” form interface. The user who submit-
ted the record.

No

Submission group submission_group_idFor records submitted via the Pawtucket “con-
tribute” form interface. The group of the user
that submitted the record.

No

Submission status submission_status_idFor records submitted via the Pawtucket “con-
tribute” form interface. A value from the sub-
mission_statuses list indicating the review sta-
tus of the submitted record.

No

Submission form submission_via_formFor records submitted via the Pawtucket “con-
tribute” form interface. The identifying code
of the form used to submit the record.

No

View count view_count Number of times record has been viewed in
Pawtucket front-end

No 0

1.8. Primary Tables and Intrinsic Fields 57

CollectiveAccess Documentation, Release 1.8

Note: ca_storage_locations.preferred_labels.name is used by data mappings and display templates to reference the
intrinsic name field in the ca_storage_location_labels table

1.8.8 Loans (ca_loans)

Loan records record details of both incoming and outgoing loans of objects. Loan records, like those in all other
tables, is fully customizable and can be used to track alls aspects of a loan, including dates, shipping, and insurance
information.

58 Chapter 1. Contents

CollectiveAccess Documentation, Release 1.8

Loan intrinsics (ca_loans)

Name Code Description Mandatory?Default
Identifier idno The loan identifier. Must follow

policy defined in configured num-
bering policy if app.conf setting re-
quire_valid_id_number_for_ca_loans is
set. Must be unique if app.conf setting
allow_duplicate_id_number_for_ca_loans is
not set.

Depends
upon
num-
bering
policy

Type type_id A value from the loan_types list indicating the
type of the record. Stored as an internally
generated numeric item_id. When setting this
value in a data import or via an API call the
item identifier may be used.

Yes null

Parent parent_id Reference to parent record. Will be null if no
parent is defined. When setting this value in a
data import or via an API call the identifier of
the parent loan may be used.

No null

Access access Determines visibility of record in public-
facing applications such as Pawtucket. Values
are defined in the access_statuses list. Typi-
cally the list includes values for “public” and
“private” visibility. For historical reasons the
value stored in the intrinsic is the list item’s
value field, not its identifer or label. By con-
vention “0” is interpreted as private and “1” as
public access, although this can be modified or
expanded in app.conf if required.

Yes 0

Status status Records the general cataloguing workflow sta-
tus of the record. Values are defined in the
workflow_statuses list. For historical reasons
the value stored in the intrinsic is the list item’s
value field, not its identifer or label. Unlike ac-
cess values, statuses have no functional impact
on a record. They are merely informations and
intended to provide a simple, straightforward
way to track the cataloguing process.

Yes 0

Source source_id A value from the loan_sources list indicating
the original source of the entity. This value is
sometimes used to broadly distinguish differ-
ent classes of entities. When setting this value
in a data import or via an API call the item
identifier may be used.

No

Submitted by user submission_user_idFor records submitted via the Pawtucket “con-
tribute” form interface. The user who submit-
ted the record.

No

Submission group submission_group_idFor records submitted via the Pawtucket “con-
tribute” form interface. The group of the user
that submitted the record.

No

Submission status submission_status_idFor records submitted via the Pawtucket “con-
tribute” form interface. A value from the sub-
mission_statuses list indicating the review sta-
tus of the submitted record. When setting this
value in a data import or via an API call the
item identifier may be used.

No

Submission form submission_via_formFor records submitted via the Pawtucket “con-
tribute” form interface. The identifying code
of the form used to submit the record.

No

View count view_count Number of times record has been viewed in
Pawtucket front-end

No 0

1.8. Primary Tables and Intrinsic Fields 59

CollectiveAccess Documentation, Release 1.8

Note: ca_loans.preferred_labels.name is used by data mappings and display templates to reference the intrinsic name
field in the ca_loan_labels table

1.8.9 Movements (ca_movements)

For more complex location tracking needs, movement records can be used to record in precise detail movement of
objects between storage locations, while on loan or while on exhibition. Used as part of a location tracking or use
history policy, movements can provide a robust record of every movement event in an object’s history.

60 Chapter 1. Contents

CollectiveAccess Documentation, Release 1.8

Movements intrinsics (ca_movements)

Name Code Description Mandatory?Default
Identifier idno The movement identifier. Must fol-

low policy defined in configured num-
bering policy if app.conf setting re-
quire_valid_id_number_for_ca_movements
is set. Must be unique if app.conf setting al-
low_duplicate_id_number_for_ca_movements
is not set.

Depends
upon
num-
bering
policy

Type type_id A value from the movement_types list indicat-
ing the type of the record. Stored as an inter-
nally generated numeric item_id. When set-
ting this value in a data import or via an API
call the item identifier may be used.

Yes null

Access access Determines visibility of record in public-
facing applications such as Pawtucket. Values
are defined in the access_statuses list. Typi-
cally the list includes values for “public” and
“private” visibility. For historical reasons the
value stored in the intrinsic is the list item’s
value field, not its identifer or label. By con-
vention “0” is interpreted as private and “1” as
public access, although this can be modified or
expanded in app.conf if required.

Yes 0

Status status Records the general cataloguing workflow sta-
tus of the record. Values are defined in the
workflow_statuses list. For historical reasons
the value stored in the intrinsic is the list item’s
value field, not its identifer or label. Unlike ac-
cess values, statuses have no functional impact
on a record. They are merely informations and
intended to provide a simple, straightforward
way to track the cataloguing process.

Yes 0

Source source_id A value from the movement_sources list in-
dicating the original source of the movement.
This value is sometimes used to broadly dis-
tinguish different classes of mivements. When
setting this value in a data import or via an API
call the item identifier may be used.

No

Submitted by user submission_user_idFor records submitted via the Pawtucket “con-
tribute” form interface. The user who submit-
ted the record.

No

Submission group submission_group_idFor records submitted via the Pawtucket “con-
tribute” form interface. The group of the user
that submitted the record.

No

Submission status submission_status_idFor records submitted via the Pawtucket “con-
tribute” form interface. A value from the sub-
mission_statuses list indicating the review sta-
tus of the submitted record.

No

Submission form submission_via_formFor records submitted via the Pawtucket “con-
tribute” form interface. The identifying code
of the form used to submit the record.

No

View count view_count Number of times record has been viewed in
Pawtucket front-end

No 0

1.8. Primary Tables and Intrinsic Fields 61

CollectiveAccess Documentation, Release 1.8

Note: ca_movements.preferred_labels.name is used by data mappings and display templates to reference the intrinsic
name field in the ca_movement_labels table

1.8.10 Object Representations (ca_object_representations)

Representations capture representative digital media (images, video, audio, PDFs) for objects. Representation records
usually contain only just a media file, but can accommodate additional cataloguing that is specific to the media file
(not to the object the file depicts or represents) if desired. When used. representation metadata often includes captions,
credits, access information, rights and reproduction restrictions.

62 Chapter 1. Contents

CollectiveAccess Documentation, Release 1.8

Object representation intrinsics (ca_objects_representations)

Name Code Description Mandatory?Default
Identifier idno The representation identifier. Must fol-

low policy defined in configured num-
bering policy if app.conf setting re-
quire_valid_id_number_for_ca_object_representations
is set. Must be unique if app.conf setting al-
low_duplicate_id_number_for_ca_object_representations
is not set.

Depends
upon
num-
bering
policy

Type type_id A value from the object_representation_types
list indicating the type of the record. Stored
as an internally generated numeric item_id.
When setting this value in a data import or via
an API call the item identifier may be used.

Yes null

Access access Determines visibility of record in public-
facing applications such as Pawtucket. Values
are defined in the access_statuses list. Typi-
cally the list includes values for “public” and
“private” visibility. For historical reasons the
value stored in the intrinsic is the list item’s
value field, not its identifer or label. By con-
vention “0” is interpreted as private and “1” as
public access, although this can be modified or
expanded in app.conf if required.

Yes 0

Status status Records the general cataloguing workflow sta-
tus of the record. Values are defined in the
workflow_statuses list. For historical reasons
the value stored in the intrinsic is the list item’s
value field, not its identifer or label. Unlike ac-
cess values, statuses have no functional impact
on a record. They are merely informations and
intended to provide a simple, straightforward
way to track the cataloguing process.

Yes 0

MD5 checksum md5 The MD5 checksum of the original media up-
loaded to the represenatation.

Yes

MIME type mimetype The MIME type of the original media up-
loaded to the representation. Ex. for a JPEG
image the MiME type will be image/jpeg. For
a PDF the MIME type will be application.pdf.

Yes

Original filename original_filename The file name of the original media uploaded
to the representation. For web browser uploads
this file name is sent by the client and may not
always be defined.

Yes

Media media The original uploaded media and derivatives. Yes
Media metadata media_metadata EXIF, IPTC and XMP extracted from the orig-

inal uploaded media
Yes

Media content media_content Text content extracted from the original up-
loaded media. For PDF and Microsoft Office
documents this will be the full text of the doc-
ument. It will be blank for most other file for-
mats.

Yes

Source source_id A value from the entity_sources list indicating
the original source of the entity. This value
is sometimes used to broadly distinguish dif-
ferent classes of object representations. When
setting this value in a data import or via an API
call the item identifier may be used.

No

Submitted by user submission_user_idFor records submitted via the Pawtucket “con-
tribute” form interface. The user who submit-
ted the record.

No

Submission group submission_group_idFor records submitted via the Pawtucket “con-
tribute” form interface. The group of the user
that submitted the record.

No

Submission status submission_status_idFor records submitted via the Pawtucket “con-
tribute” form interface. A value from the sub-
mission_statuses list indicating the review sta-
tus of the submitted record.

No

Submission form submission_via_formFor records submitted via the Pawtucket “con-
tribute” form interface. The identifying code
of the form used to submit the record.

No

View count view_count Number of times record has been viewed in
Pawtucket front-end

No 0

1.8. Primary Tables and Intrinsic Fields 63

CollectiveAccess Documentation, Release 1.8

Note: ca_objects_representations.preferred_labels.name is used by data mappings and display templates to reference
the intrinsic name field in the ca_objects_representation_labels table

1.8.11 Tours (ca_tours)

Tour records capture information about on-site or online tours of objects, locations, collections or any other record in
the database.

Tour intrinsics (ca_tours)

Name Code Description Mandatory?Default
Tour code tour_code The tour identifier. Must be a unique alpha-

numeric code without spaces or punctuation
beyond underscores.

Yes

Type type_id A value from the tour_types list indicating the
type of the record. Stored as an internally
generated numeric item_id. When setting this
value in a data import or via an API call the
item identifier may be used.

Yes null

Access access Determines visibility of record in public-
facing applications such as Pawtucket. Values
are defined in the access_statuses list. Typi-
cally the list includes values for “public” and
“private” visibility. For historical reasons the
value stored in the intrinsic is the list item’s
value field, not its identifer or label. By con-
vention “0” is interpreted as private and “1” as
public access, although this can be modified or
expanded in app.conf if required.

Yes 0

Status status Records the general cataloguing workflow sta-
tus of the record. Values are defined in the
workflow_statuses list. For historical reasons
the value stored in the intrinsic is the list item’s
value field, not its identifer or label. Unlike ac-
cess values, statuses have no functional impact
on a record. They are merely informations and
intended to provide a simple, straightforward
way to track the cataloguing process.

Yes 0

Source source_id A value from the tour_sources list indicating
the original source of the tour. This value is
sometimes used to broadly distinguish differ-
ent classes of tours. When setting this value in
a data import or via an API call the item iden-
tifier may be used.

No

Icon icon Icon image to display for tour. No
Color color Highlight color for tour in hex format. No
View count view_count Number of times record has been viewed in

Pawtucket front-end
No 0

Rank rank The sort order position of the tour. Must be a
whole number; lower numbers indicate higher
ranking in sort.

Yes 0

64 Chapter 1. Contents

CollectiveAccess Documentation, Release 1.8

Note: ca_tours.preferred_labels.name is used by data mappings and display templates to reference the intrinsic name
field in the ca_tour_labels table

1.8.12 Tour Stops (ca_tour_stops)

Each tour record has any number of ordered “stops”. Each tour stop contains metadata about the stop (descriptive text,
geographic coordinates, etc.) as well as relationships to relevant objects, entities and more.

1.8. Primary Tables and Intrinsic Fields 65

CollectiveAccess Documentation, Release 1.8

Tour stop intrinsics (ca_tour_stops)

Name Code Description Mandatory?Default
Identifier idno The tour stop identifier. Must fol-

low policy defined in configured num-
bering policy if app.conf setting re-
quire_valid_id_number_for_ca_tour_stops is
set. Must be unique if app.conf setting al-
low_duplicate_id_number_for_ca_tour_stops
is not set.

Depends
upon
num-
bering
policy

Type type_id A value from the tour_stop_types list indicat-
ing the type of the record. Stored as an inter-
nally generated numeric item_id. When set-
ting this value in a data import or via an API
call the item identifier may be used.

Yes null

Parent parent_id Reference to parent record. Will be null if no
parent is defined. When setting this value in a
data import or via an API call the identifier of
the parent place may be used.

No null

Tour tour_id A reference to the tour record (ca_tours) of
which the stop is a part. Note that a stop
is always part of a tour. It cannot exist out-
side of a tour. The raw database value con-
tained tour_id is an internally generated nu-
meric tour_id. However, when setting this in-
trinsic via an import mapping or API call you
may also use the list’s code.

No

Access access Determines visibility of record in public-
facing applications such as Pawtucket. Values
are defined in the access_statuses list. Typi-
cally the list includes values for “public” and
“private” visibility. For historical reasons the
value stored in the intrinsic is the list item’s
value field, not its identifer or label. By con-
vention “0” is interpreted as private and “1” as
public access, although this can be modified or
expanded in app.conf if required.

Yes 0

Status status Records the general cataloguing workflow sta-
tus of the record. Values are defined in the
workflow_statuses list. For historical reasons
the value stored in the intrinsic is the list item’s
value field, not its identifer or label. Unlike ac-
cess values, statuses have no functional impact
on a record. They are merely informations and
intended to provide a simple, straightforward
way to track the cataloguing process.

Yes 0

Icon icon Icon image to display for tour stop. No
Color color Highlight color for tour stop in hex format. No
Rank rank The sort order position of the tour stop. Must

be a whole number; lower numbers indicate
higher ranking in sort.

Yes 0

Note: ca_tour_stops.preferred_labels.name is used by data mappings and display templates to reference the intrinsic

66 Chapter 1. Contents

CollectiveAccess Documentation, Release 1.8

name field in the ca_tour_stop_labels table

1.8.13 Label Tables

Labels are record names or titles. All primary tables have companion label tables. Labels come in two varieties:
preferred and non-preferred. Each record has one, and only one, preferred label. The preferred label is used as the
record’s default display title. Records may have any number of non-preferred labels, which are taken as alternative
titles and may be used in searches. Labels are always present and do not need to be configured to exist.

The following shorthand is commonly used to reference preferred labels: <tablename>.preferred_labels.<label table
name field>. For example the following would display an object preferred label:

ca_objects.preferred_labels.name

See label name fields below for table specific name fields.

1.8.14 Label Table Intrinsics

Occassionally label table names and intrinsic fields need to be referenced directly, for example while configuring
searching indexing. Search indexing in Search_indexing.conf.

Note: <table name>.preferred_labels.<name of intrinsic> is used by data mappings and display templates
to reference the intrinsic _name_ field for preferred labels. The _<table name>.preferred_labels_ construct is
simply an alias for the label table, filtered to return only those entries with the _is_preferred_ set. For ex-
ample _ca_objects.preferred_labels.name_ and _ca_object_labels.name_ refer to the same thing, except that the
_ca_object_labels.name_ version will return _all_ labels, while _ca_objects.preferred_labels.name_ will return
only those marked as preferred. Similarly, _<table name>.nonpreferred_labels.<name of intrinsic>_ will re-
turn all entries _not_ marked as preferred. Whether you use _ca_objects.preferred_labels.<name of intrinsic>_,
ca_objects.nonpreferred_labels.<name of intrinsic>_ or _ca_object_labels.<name of intrinsic>_, the intrinsic names
used are the same ones listed below.

Label tables for primary table

Primary table Label table
ca_objects ca_object_labels
ca_object_lots ca_object_lot_labels
ca_entities ca_entity_labels
ca_places ca_place_labels
ca_occurrences ca_occurrence_labels
ca_collections ca_collection_labels
ca_storage_locations ca_storage_location_labels
ca_loans ca_loan_labels
ca_movements ca_movement_labels
ca_object_representations ca_object_representation_labels
ca_tours ca_tour_labels
ca_tour_stops ca_tour_stop_labels

1.8. Primary Tables and Intrinsic Fields 67

http://manual.collectiveaccess.org/providenceConfiguration/mainConfiguration/search_indexing.html

CollectiveAccess Documentation, Release 1.8

Available for all label tables

Name Code Description
Preferred? is_preferred A preferred label is the one ‘true’ title or

name of an item – the one you should use
when referring to the item – used for dis-
play. There can only be one preferred la-
bel per item per locale. That is, if you are
cataloguing in three languages you can have
up to three preferred labels, one in each lan-
guage. Non-preferred labels are alternative
names that can be used to enhance searching
or preserve identity. Non-preferred labels
can repeat without limit, take locales and
optionally take type values which may be
employed distinguish valid ‘alternate’ labels
from simple search enhancing non-preferred
labels.

Name sort name_sort Automatically generated version of label
used for sorting.

Type type_id
Source source_info
Locale locale_id Locale of the label.

Note: ca_tour_labels and ca_tour_stop_labels do not contain type, source_info and is_preferred

Label name fields

Name fields within label tables can differ for different tables.

The following applies to: Object labels (ca_object_labels), Object Lot labels (ca_object_lot_labels), Place labels
(ca_place_labels), Occurrence labels (ca_occurrence_labels), Collection labels (ca_collection_labels), Storage lo-
cation labels (ca_storage_location_labels), Loan labels (ca_loan_labels), Movement labels (ca_movement_labels),
Object representation labels (ca_object_representation_labels), Tour labels (ca_tour_labels), Tour stop labels
(ca_tour_stop_labels)

Name Code Description
Name name Name of record, used for display.

The following applies to: Entity labels (ca_entity_labels)

Name Code Description
Displayname displayname Full name of entity, used for display.
Forename/First name forename Forename of the entity
Additional forenames/ first
names

other_forename Alternate forenames

Middle name middlename Middle name of the entity
Surname/Last name surname Surname of the entity
Prefix prefix Prefix for the entity
Suffix suffix Suffix for the entity

68 Chapter 1. Contents

CollectiveAccess Documentation, Release 1.8

1.8.15 Special Intrinsics

Additional intrinsics provide access to change log information, origination and history tracking information. They are
potentially available many or all primary tables, as noted below.

1.8. Primary Tables and Intrinsic Fields 69

CollectiveAccess Documentation, Release 1.8

Code Description Applies to Examples
created Date/time record was created. Re-

turns date/time formatted using sys-
tem defaults for display. Optional sub-
fields may be specified to obtain the
date/time in different formats, and in-
formation about the user that created
the record. Subfields include:
user = the creator’s user name fname
= the creator’s first name lname = the
creator’s last name email = the cre-
ator’s email address timestamp = the
creation date/time as a Unix times-
tamp

Any record ca_objects.created
(returns date/time
as display text)
ca_objects.created.timestamp
(returns date/time
as Unix timestamp)
ca_objects.created.email
(returns the email of the
user who created the
record)

lastModified Date/time record was last modified.
Returns date/time formatted using
system defaults for display. Optional
subfields may be specified to obtain
the date/time in different formats, and
information about the user that last
modified the record. Subfields in-
clude:
user = the user name of the user who
last modified the record fname = the
last modifier’s first name lname = the
last modifier’s last name email = the
last modifier’s email address times-
tamp = the last modification date/time
as a Unix timestamp

Any record ca_objects.lastModified
(returns date/time
of last modifica-
tion as display text)
ca_objects.lastModified.timestamp
(returns date/time
of last modification
as Unix timestamp)
ca_objects.lastModified.email
(returns the email of the
user who last modified the
record)

_guid A globally unique identifier (GUID)
for the record. This is the same GUID
value used to track records across
replicated systems. (Available from
version 1.7.9)

Any ford ca_objects.guid

history_tracking_current_valueCurrent value for history tracking pol-
icy. Policy used is the default pol-
icy unless overridden by passing the
a policy option value on the tag.

Any record for which a
current value tracking pol-
icy is defined

ca_objects.history_tracking_current_value
(current value for ob-
ject default policy)
ca_objects.history_tracking_current_value%policy=provenance
(current value for object
record using “prove-
nance” policy)

history_tracking_current_dateDate of current value for history track-
ing policy. Policy used is the default
policy unless overridden by passing
the a policy option value on the tag.

Any record for which a
current value tracking pol-
icy is defined

ca_objects.history_tracking_current_date
(current value cate for
object default policy)
ca_objects.history_tracking_current_date%policy=provenance
(current value date for
object record using
“provenance” policy)

history_tracking_current_contentsValues of all records that use this
record as their current value. Policy
used is the default policy unless over-
ridden by passing the a policy option
value on the tag.

Any record which is used
by at least one current
value tracking policy

ca_storage_locations.history_tracking_current_contents
(all values that use
this location record
as their current value
for any default policy)
ca_storage_locations.history_tracking_current_contents%policy=current_location
(all records using this lo-
cation record as their
curent value using the
“current_location” policy)

submitted_by_userName and email of user who sub-
mitted the record using the Pawtucket
“contribute” form feature. By default
the user’s first and last name, followed
by email address are returned. The re-
turn value may be controlled by pass-
ing a “display_template” tag option.
The display template is evaluated rel-
ative to the ca_users record.

ca_objects,
ca_entities, ca_places,
ca_occurrences,
ca_collections,
ca_object_lots, ca_loans,
ca_movements,
ca_storage_locations,
ca_object_representations

ca_objects.submitted_by_user
(Returns <first name>
<last name> (<email>))
ca_objects.submitted_by_user%display_template=^ca_users.email
(Returns email address
alone)

submission_groupThe group the user was in when the
record was submitted using the Paw-
tucket “contribute” form feature. By
default the group name followed by
group code is returned. The return
value may be controlled by passing
a “display_template” tag option. The
display template is evaluated relative
to the ca_user_groups record.

ca_objects,
ca_entities, ca_places,
ca_occurrences,
ca_collections,
ca_object_lots, ca_loans,
ca_movements,
ca_storage_locations,
ca_object_representations

ca_objects.submission_group
(Returns <group
name> (<group code>))
ca_objects.submission_group%display_template=^ca_user_groups.codel
(Returns group code
alone)

70 Chapter 1. Contents

CollectiveAccess Documentation, Release 1.8

1.9 Metadata Elements

1.9.1 Attribute Types Settings

• Attribute settings: Containers

• Attribute settings: Text

• Attribute settings: DateRange

• Attribute settings: Lists

• Attribute settings: Geocode

– Google Maps integration

– Adding rectified overlays

• Attribute settings: Url

• Attribute settings: Currency

• Attribute settings: Length

• Attribute settings: Weight

• Attribute settings: TimeCode

• Attribute settings: Integer

• Attribute settings: Numeric

• Attribute settings: LCSH

• Attribute settings: GeoNames

• Attribute settings: Files

• Attribute settings: Media

• Attribute settings: Taxonomy

• Attribute settings: Entities

• Attribute settings: Color

• Attribute settings: File size

Attribute settings: Containers

Unlike all other attribute types, containers do not represent data values. Rather their sole function is to organize
attributes into groups for display. In a multi-attribute value set (for example an address with separate attributes for
street number, city, state, country and postal code), there will be at least one container serving as the “root” (or top)
of the attribute hierarchy. Other containers may serve to further group items in the multi-attribute set into sub-groups
displayed on separate lines of a form.

1.9. Metadata Elements 71

CollectiveAccess Documentation, Release 1.8

Set-
tings

Description De-
fault

Val-
ues

does-
Not-
Take-
Lo-
cale

Defines whether element take locale specification. 0
(takes
lo-
cale)

0
or
1

line-
BreakAfter-
Num-
berO-
fEle-
ments

Number of metadata elements after which a line break should be inserted. 0
(no
line
breaks)

In-
te-
gers
zero
or
greater

can-
BeUsedIn-
Search-
Form

Use this option if the attribute value can be used in search forms. 1
(used
in
search
forms)

0
or
1

can-
BeUsedInDis-
play

Use this option if the attribute value can be used for display in search results. 1
(used
for
dis-
play)

0
or
1

dis-
playTem-
plate

Layout for value when used in a display. Element code tags prefixed with the ^ character,
used to represent the value in the template. For example: ^my_element_code.

Dis-
play_Templates

dis-
play-
De-
lim-
iter

Delimiter to use between multiple values. ,
(comma)

Text

read-
on-
lyTem-
plate

Layout used when a container value is in read-only mode. If this template is set, existing
values are always displayed in read-only mode until you click to edit. This can be used to
preserve screen space for large containers.
Element code tags prefixed with the ^ character, used to represent the value in the template.
For example: ^ca_objects.my_notes. Each of these templates is evaluated relative to a spe-
cific value instance for this container, so other display template elements like <unit>, <ifdef>
or <more> might not work exactly as expected. More general notes on display templates are
here: Display_Templates

HTML

72 Chapter 1. Contents

CollectiveAccess Documentation, Release 1.8

Attribute settings: Text

Set-
tings

Description De-
fault

Values

min-
Chars

The minimum number of characters to allow. Input shorter than required will be
rejected.

0 (no
mini-
mum)

Integers
zero or
greater

max-
Chars

The maximum number of characters to allow. Input longer than required will be
rejected.

65535 Integers
greater
than zero

regex A Perl-format regular expression with which to validate the input. Input not
matching the expression will be rejected. Do not include the leading and trailling
delimiter characters (typically “/”) in your expression. Leave blank if you don’t
want to use regular expression-based validation.

Expression-
based
vali-
dation
value

field-
Width

Width, in characters, of the field when displayed in a user interface. 40 Integers
greater
than zero

field-
Height

Height, in characters, of the field when displayed in a user interface. 1 Integers
greater
than zero

usewysi-
wyged-
itor

Check this option if you want to use a word-processor like editor with this text
field. If you expect users to enter rich text (italic, bold, underline) then you might
want to enable this.

0 (not
en-
abled)

0 or 1

de-
fault_text

Text to pre-populate a newly created attribute with Text

sug-
ges-
tEx-
isting-
Values

Use this option if you want the attribute to suggest previously saved values as text.
This option is only effective if the display height of the text entry is equal to 1.

0
(does
not
sug-
gest
text)

0 or 1

sug-
ges-
tEx-
isting-
Value-
Sort

If suggestion of existing values is enabled this option determines how returned
values are sorted. Choose valueto sort alphabetically. Choose most recently added
to sort with most recently entered values first.

value value
ormost
recently
added

does-
Not-
Take-
Locale

Defines whether element take locale specification 0
(takes
locale)

0 or 1

can-
BeUsedIn-
Sort

Use this option if this attribute value can be used for sorting of search results. 1
(used
in
sort)

0 or 1

can-
BeUsedIn-
Search-
Form

Use this option if the attribute value can be used in search forms 1
(used
in
search
forms)

0 or 1

can-
BeUsedInDis-
play

Use this option if the attribute value can be used for display in search results 1
(used
for
dis-
play)

0 or 1

dis-
playTem-
plate

Layout for value when used in a display. Element code tags prefixed with
the ^ character, used to represent the value in the template. For example:
<i>^my_element_code</i>.

HTML

dis-
play-
Delim-
iter

Delimiter to use between multiple values ,
(comma)

Text

must-
BeU-
nique

If this option is set, the system will prevent adding duplicate values for this meta-
data element. If a value already exists, it can’t be entered again. A warning will
be placed next to the text field as data is entered and saving the record anyway
will result in an error.

1 0 or 1

1.9. Metadata Elements 73

CollectiveAccess Documentation, Release 1.8

Attribute settings: DateRange

Set-
tings

Description Default Values

dat-
eRange-
Bound-
aries

The range of dates that are accepted. Input dates outside the range will
be rejected. Leave blank if you do not require restrictions.

Accepted
date/time
expres-
sion

field-
Width

Width, in characters, of the field when displayed in a user interface. 40 Integers
greater
than zero

use-
DatePicker

Use this option if you want a calendar-based date picker to be available
for date entry.

0 (not
enabled)

0 or 1

de-
fault_text

Value to pre-populate a newly created attribute with. Accepted
date/time
expres-
sion

must-
NotBe-
Blank

Use this option if this attribute value must be set to some value, if, in
other words, it must not be blank.

0 (can be
blank)

0 or 1

isLifes-
pan

Use this option if this attribute value represents a persons lifespan. Lifes-
pans are displayed in a slightly different format in many languages than
standard dates.

0 (not
enabled)

0 or 1

sugges-
tExist-
ingVal-
ues

Use this option if you want the attribute to suggest previously saved val-
ues as text. This option is only effective if the display height of the text
entry is equal to 1.

0 (does not
suggest text)

0 or 1

sugges-
tExist-
ingVal-
ueSort

If suggestion of existing values is enabled this option determines how
returned values are sorted. Choose value to sort alphabetically. Choose
most recently added to sort with most recently entered values first.

value value
or most
recently
added

does-
Not-
TakeLo-
cale

Defines whether element take locale specification 1 (does not
take locale
specifica-
tions)

0 or 1

can-
BeUsedIn-
Sort

Use this option if this attribute value can be used for sorting of search
results.

1 (used in
sort)

0 or 1

can-
BeUsedIn-
Search-
Form

Use this option if the attribute value can be used in search forms 1 (used
in search
forms)

0 or 1

can-
BeUsedInDis-
play

Use this option if the attribute value can be used for display in search
results

1 (used for
display)

0 or 1

dis-
playTem-
plate

Layout for value when used in a display. Element code tags prefixed with
the ^ character, used to represent the value in the template. For example:
<i>^my_element_code</i>.

HTML

display-
Delim-
iter

Delimiter to use between multiple values , (comma) Text

74 Chapter 1. Contents

CollectiveAccess Documentation, Release 1.8

Attribute settings: Lists

Set-
tings

Description De-
fault

Values

list-
Width

Width, in characters or pixels, of the
list when displayed in a user interface.
When list is rendered as a hierarchy
browser width must be in pixels.

40 Characters or pixels

lis-
tHeight

Height, in pixels, of the list when dis-
played in a user interface as a hierarchy
browser.

200px Pixels

max-
Columns

Maximum number of columns to use
when laying out radio buttons or check-
list.

3 Integers greater than zero

ren-
der

Determines how the list is displayed vi-
sually.

Drop-
down
list
(‘se-
lect’)

Drop-down menu (code=”select”) Yes/no check-
box (code=”yes_no_checkboxes”) Radio buttons
(code=”radio_buttons”); Checklist (code=”checklist”)
Type-ahead lookup (code=”lookup”) Horizontal
hierarchy browser (code=”horiz_hierbrowser”)
Horizontal hierarchy browser with search
(code=”horiz_hierbrowser_with_search”) Vertical
hierarchy browser (code=”vert_hierbrowser”)

does-
Not-
Take-
Lo-
cale

Defines whether element takes locale
specification

1
(does
not
take
lo-
cale
spec-
ifica-
tions)

0 or 1

re-
quireValue

Defines whether a list item must be ex-
plicitly set. If set to 1 then a valid
list item must be selected, and in the
absence of a selected value the default
value is used. If set to zero then a “null”
value (labeled “none” in the English lo-
cale) is added to the list and made de-
fault

1 (re-
quire
value)

0 or 1

can-
BeUsedIn-
Sort

Use this option if this attribute value
can be used for sorting of search results.

1
(used
in
sort)

0 or 1

can-
BeUsedIn-
Search-
Form

Use this option if the attribute value can
be used in search forms

1
(used
in
search
forms)

0 or 1

can-
BeUsedInDis-
play

Use this option if the attribute value can
be used for display in search results

1
(used
for
dis-
play)

0 or 1

dis-
playTem-
plate

Layout for value when used in a dis-
play. Element code tags prefixed with
the ^ character, used to represent the
value in the template. For example:
^my_element_code.

HTML

dis-
play-
De-
lim-
iter

Delimiter to use between multiple val-
ues

,
(comma)

Text

1.9. Metadata Elements 75

CollectiveAccess Documentation, Release 1.8

Attribute settings: Geocode

The Geocode attribute type represents one or more coordinates (latitude/longitude pairs) indicating the location of an
item (collection object, geographic place, storage location or whatever else you want to place on a map).

Coordinates can be entered as decimal latitude/longitude pairs (ex. 40.321,-74.55) or in degrees-minutes-seconds
format (ex. 40 23’ 10N, 74 30’ 5W). Multiple latitude/longitude coordinates should be separated with semicolons
(“;”). UTM format coordinates is also supported.

Non-coordinate entries are converted to coordinates using the Google Maps Geocoding service, which works well for
most full and partial addresses worldwide. To unambiguously distinguish coordinate data from address data to be
geocoded, it is strongly suggested that coordinate lists be enclosed in square brackets (ex. [40.321,-74.55; 41.321,-
74.55;41.321,-75.55;40.321,-75.55;40.321,-74.55].

Google Maps integration

The Google Maps mapping service is used to produce maps displaying your coordinates. The Geocode attribute used
to support either version 2 or 3 of the Google Maps API, selectable via the google_api directive in the global.conf
file. As of August 2010, only the v3 API is supported since v2 is now officially deprecated by Google. Any old v2
configuration in your installation (assuming you installed prior to August 2010) will be ignored.

Adding rectified overlays

You can add layers that include rectified maps by creating serve-able tiles using a tool such as MapWarper and the
Google/OSM URL it provides as an export option. The OSM URL will be in the format http://mapwarper.
net/maps/tile/0001/z/x/y.png. You will need to change the x, y and z placeholders in ${x}, ${y} and ${z}
respectively. The example OSM URL for CollectiveAccess would be http://mapwarper.net/maps/tile/
3671/${z}/${x}/${y}.png. This URL should be entered into the “Tile Server URL” option for the metadata
element. You should also provide a layer name describing the content of the map. If you wish to allow users to toggle
the layer on and off check the “Show layer switcher controls” checkbox.

76 Chapter 1. Contents

https://en.wikipedia.org/wiki/Universal_Transverse_Mercator_coordinate_system
http://mapwarper.net

CollectiveAccess Documentation, Release 1.8

Settings Description Default Values
field-
Width

Width, in characters, of the field when displayed in a user inter-
face.

70 Integers
greater
than zero

field-
Height

Height, in characters, of the field when displayed in a user inter-
face.

2 Integers
greater
than zero

mustNot-
BeBlank

Use this option if this attribute value must be set to some value,
if, in other words, it must not be blank.

0 (can be blank) 0 or 1

doesNot-
TakeLo-
cale

Defines whether element takes locale specification. 1 (does not take lo-
cale specifications)

0 or 1

can-
BeUsedIn-
Sort

Use this option if this attribute value can be used for sorting of
search results.

0 (not used in sort) 0 or 1

can-
BeUsedIn-
Search-
Form

Use this option if the attribute value can be used in search forms. 1 (used in search
forms)

0 or 1

can-
BeUsedInDis-
play

Use this option if the attribute value can be used for display in
search results.

1 (used for display) 0 or 1

dis-
playTem-
plate

Layout for value when used in a display. Element code tags pre-
fixed with the ^ character, used to represent the value in the tem-
plate. For example: <i>^my_element_code</i>.

HTML

tile-
ServerURL

OSM URL for tileserver to load custom tiles from, with place-
holders for X, Y and Z values in the format ${x}. .

http://mapwarper.
net/maps/tile/
3671/${z}/${x}/${y}.png

URL
with
place-
holders

tileLay-
erName

Display name for layer containing tiles loaded from tile server
specified in the tile server URL setting.

1929 Street Atlas Text

layer-
Switcher-
Control

Include layer switching controls in the map interface. 1 (show controls) 0 or 1

Attribute settings: Url

Accepts a properly formatted URL value.

1.9. Metadata Elements 77

http://mapwarper.net/maps/tile/3671
http://mapwarper.net/maps/tile/3671
http://mapwarper.net/maps/tile/3671

CollectiveAccess Documentation, Release 1.8

Set-
tings

Description Default Values

min-
Chars

The minimum number of characters to allow. Input shorter than required will
be rejected.

0 (no min-
imum)

Integers
zero or
greater

max-
Chars

The maximum number of characters to allow. Input longer than required will
be rejected.

65535 Integers
greater
than zero

regex A Perl-format regular expression with which to validate the input. Input not
matching the expression will be rejected. Do not include the leading and
trailling delimiter characters (typically “/”) in your expression. Leave blank
if you don’t want to use regular expression-based validation.

Expression-
based
vali-
dation
value

field-
Width

Width, in characters, of the field when displayed in a user interface. 40 Integers
greater
than zero

field-
Height

Height, in characters, of the field when displayed in a user interface. 1 Integers
greater
than zero

re-
quireValue

Use this option if you want an error to be thrown if the URL is left blank. 0 (en-
try not
required)

0 or 1

sug-
ges-
tEx-
isting-
Values

Use this option if you want the attribute to suggest previously saved values as
text. This option is only effective if the display height of the text entry is equal
to 1.

0 (does
not sug-
gest
text)

0 or 1

sug-
ges-
tEx-
isting-
Value-
Sort

If suggestion of existing values is enabled this option determines how returned
values are sorted. Choosevalue to sort alphabetically. Choose most recently
added to sort with most recently entered values first.

value value
ormost
recently
added

does-
Not-
Take-
Locale

Defines whether element takes locale specification. 1 (does
not take
locale
specifica-
tions)

0 or 1

can-
BeUsedIn-
Sort

Use this option if this attribute value can be used for sorting of search results. 1 (used in
sort)

0 or 1

can-
BeUsedIn-
Search-
Form

Use this option if the attribute value can be used in search forms. 1 (used
in search
forms)

0 or 1

can-
BeUsedInDis-
play

Use this option if the attribute value can be used for display in search results. 1 (used
for dis-
play)

0 or 1

dis-
playTem-
plate

Layout for value when used in a display. Element code tags prefixed with
the ^ character, used to represent the value in the template. For example:
<i>^my_element_code</i>.

HTML

dis-
play-
De-
limiter

Delimiter to use between multiple values. , (comma) Text

78 Chapter 1. Contents

CollectiveAccess Documentation, Release 1.8

Attribute settings: Currency

Accepts a currency value composed of a currency specifier and a decimal number.

Settings Description Default Values
minValue The minimum value allowed. Input less than the required value will

be rejected.
0 (no mini-
mum)

Numeric

maxValue The maximum value allowed. Input greater than the required value
will be rejected.

0 (no maxi-
mum)

Numeric

field-
Width

Width, in characters, of the field when displayed in a user interface. 40 Integers
greater
then zero

field-
Height

Height, in characters, of the field when displayed in a user interface. 1 Integers
greater
then zero

doesNot-
TakeLo-
cale

Defines whether element takes locale specification. 1 (does not
take locale
specifications)

0 or 1

can-
BeUsedIn-
Sort

Use this option if this attribute value can be used for sorting of search
results.

1 (used in sort) 0 or 1

can-
BeUsedIn-
Search-
Form

Use this option if the attribute value can be used in search forms. 1 (used in
search forms)

0 or 1

can-
BeUsedInDis-
play

Use this option if the attribute value can be used for display in search
results.

1 (used for dis-
play)

0 or 1

dis-
playTem-
plate

Layout for value when used in a display. Element code tags prefixed
with the ^ character, used to represent the value in the template. For
example: <i>^my_element_code</i>.

HTML

display-
Delimiter

Delimiter to use between multiple values. , (comma) Text

Attribute settings: Length

Accepts length measurements in metric, English and typographical points units.

1.9. Metadata Elements 79

CollectiveAccess Documentation, Release 1.8

Settings Description Default Values
field-
Width

Width, in characters, of the field when displayed in a user interface. 40 Integers
greater
then zero

field-
Height

Height, in characters, of the field when displayed in a user interface. 1 Integers
greater
then zero

re-
quireValue

Use this option if you want an error to be thrown if this measurement
is left blank.

0 (can be
blank)

0 or 1

doesNot-
TakeLo-
cale

Defines whether measurement takes locale specification. 1 (does not
take locale
specifications)

0 or 1

can-
BeUsedIn-
Sort

Use this option if this attribute value can be used for sorting of search
results.

1 (used in sort) 0 or 1

can-
BeUsedIn-
Search-
Form

Use this option if the attribute value can be used in search forms. 1 (used in
search forms)

0 or 1

can-
BeUsedInDis-
play

Use this option if the attribute value can be used for display in search
results.

1 (used for dis-
play)

0 or 1

dis-
playTem-
plate

Layout for value when used in a display. Element code tags prefixed
with the ^ character, used to represent the value in the template. For
example: <i>^my_element_code</i>.

HTML

display-
Delimiter

Delimiter to use between multiple values. , (comma) Text

Attribute settings: Weight

Accepts weight measurements in metric and English units.

80 Chapter 1. Contents

CollectiveAccess Documentation, Release 1.8

Settings Description Default Values
field-
Width

Width, in characters, of the field when displayed in a user interface. 40 Integers
greater
then zero

field-
Height

Height, in characters, of the field when displayed in a user interface. 1 Integers
greater
then zero

re-
quireValue

Use this option if you want an error to be thrown if this measurement
is left blank.

0 (can be
blank)

0 or 1

doesNot-
TakeLo-
cale

Defines whether measurement takes locale specification. 1 (does not
take locale
specifications)

0 or 1

can-
BeUsedIn-
Sort

Use this option if this attribute value can be used for sorting of search
results.

1 (used in sort) 0 or 1

can-
BeUsedIn-
Search-
Form

Use this option if the attribute value can be used in search forms. 1 (used in
search forms)

0 or 1

can-
BeUsedInDis-
play

Use this option if the attribute value can be used for display in search
results.

1 (used for dis-
play)

0 or 1

dis-
playTem-
plate

Layout for value when used in a display. Element code tags prefixed
with the ^ character, used to represent the value in the template. For
example: <i>^my_element_code</i>.

HTML

display-
Delimiter

Delimiter to use between multiple values. , (comma) Text

Attribute settings: TimeCode

Accepts time offsets in a number of time code formats.

1.9. Metadata Elements 81

CollectiveAccess Documentation, Release 1.8

Settings Description Default Values
field-
Width

Width, in characters, of the field when displayed in a user interface. 40 Integers
greater
than zero

field-
Height

Height, in characters, of the field when displayed in a user interface. 1 Integers
greater
than zero

re-
quireValue

Use this option if you want an error to be thrown if this measurement
is left blank.

0 (can be
blank)

0 or 1

doesNot-
TakeLo-
cale

Defines whether measurement takes locale specification. 1 (does not
take locale
specifications)

0 or 1

can-
BeUsedIn-
Sort

Use this option if this attribute value can be used for sorting of search
results.

1 (used in sort) 0 or 1

can-
BeUsedIn-
Search-
Form

Use this option if the attribute value can be used in search forms. 1 (used in
search forms)

0 or 1

can-
BeUsedInDis-
play

Use this option if the attribute value can be used for display in search
results.

1 (used for dis-
play)

0 or 1

dis-
playTem-
plate

Layout for value when used in a display. Element code tags prefixed
with the ^ character, used to represent the value in the template. For
example: <i>^my_element_code</i>.

HTML

display-
Delimiter

Delimiter to use between multiple values. , (comma) Text

Attribute settings: Integer

Accepts a properly formatted integer value.

82 Chapter 1. Contents

CollectiveAccess Documentation, Release 1.8

Set-
tings

Description Default Values

min-
Chars

The minimum number of characters to allow. Input shorter than required will be
rejected.

0 (no
mini-
mum)

Integers
zero or
greater

max-
Chars

The maximum number of characters to allow. Input longer than required will be
rejected.

65535 Integers
greater
than zero

min-
Value

The minimum numeric value to allow. Values smaller than required will be re-
jected.

Numeric

max-
Value

The maximum numeric value to allow. Values greater than required will be re-
jected.

Numeric

regex A Perl-format regular expression with which to validate the input. Input not
matching the expression will be rejected. Do not include the leading and trailing
delimiter characters (typically “/”) in your expression. Leave blank if you don’t
want to use regular expression-based validation.

Expression-
based
vali-
dation
value

field-
Width

Width, in characters, of the field when displayed in a user interface. 40 Integers
greater
than zero

field-
Height

Height, in characters, of the field when displayed in a user interface. 1 Integers
greater
than zero

must-
Not-
Be-
Blank

Use this option if you want an error to be thrown if the URL is left blank. 0 (entry
not re-
quired)

0 or 1

does-
Not-
Take-
Locale

Defines whether element takes locale specification. 0 (takes
locale
specifi-
cations)

0 or 1

can-
BeUsedIn-
Sort

Use this option if this attribute value can be used for sorting of search results. 1 (used
in sort)

0 or 1

can-
BeUsedIn-
Search-
Form

Use this option if the attribute value can be used in search forms. 1 (used
in
search
forms)

0 or 1

can-
BeUsedInDis-
play

Use this option if the attribute value can be used for display in search results. 1 (used
for dis-
play)

0 or 1

dis-
playTem-
plate

Layout for value when used in a display. Element code tags prefixed with
the ^ character, used to represent the value in the template. For example:
<i>^my_element_code</i>.

HTML

dis-
play-
Delim-
iter

Delimiter to use between multiple values. ,
(comma)

Text

1.9. Metadata Elements 83

CollectiveAccess Documentation, Release 1.8

Attribute settings: Numeric

Accepts numeric values and strings consisting of optional sign, any number of digits, optional decimal part and op-
tional exponential part.

Set-
tings

Description Default Values

min-
Chars

The minimum number of characters to allow. Input shorter than required will be
rejected.

0 (no
mini-
mum)

Integers
zero or
greater

max-
Chars

The maximum number of characters to allow. Input longer than required will be
rejected.

10 Integers
greater
than zero

min-
Value

The minimum numeric value to allow. Values smaller than required will be re-
jected.

Integers

max-
Value

The maximum numeric value to allow. Values greater than required will be re-
jected.

Integers

regex A Perl-format regular expression with which to validate the input. Input not
matching the expression will be rejected. Do not include the leading and trailing
delimiter characters (typically “/”) in your expression. Leave blank if you don’t
want to use regular expression-based validation.

Expression-
based
vali-
dation
value

field-
Width

Width, in characters, of the field when displayed in a user interface. 40 Integers
greater
than zero

field-
Height

Height, in characters, of the field when displayed in a user interface. 1 Integers
greater
than zero

must-
Not-
Be-
Blank

Use this option if you want an error to be thrown if the URL is left blank. 0 (entry
not re-
quired)

0 or 1

does-
Not-
Take-
Locale

Defines whether element takes locale specification. 0 (takes
locale
specifi-
cations)

0 or 1

can-
BeUsedIn-
Sort

Use this option if this attribute value can be used for sorting of search results. 1 (used
in sort)

0 or 1

can-
BeUsedIn-
Search-
Form

Use this option if the attribute value can be used in search forms. 1 (used
in
search
forms)

0 or 1

can-
BeUsedInDis-
play

Use this option if the attribute value can be used for display in search results. 1 (used
for dis-
play)

0 or 1

dis-
playTem-
plate

Layout for value when used in a display. Element code tags prefixed with
the ^ character, used to represent the value in the template. For example:
<i>^my_element_code</i>.

HTML

dis-
play-
Delim-
iter

Delimiter to use between multiple values. ,
(comma)

Text

84 Chapter 1. Contents

CollectiveAccess Documentation, Release 1.8

Attribute settings: LCSH

Library of Congress Subject Heading values.

1.9. Metadata Elements 85

CollectiveAccess Documentation, Release 1.8

Set-
tings

Description De-
fault

Values

field-
Width

Width, in
charac-
ters, of the
field when
displayed
in a user
interface.

60 Integers greater than zero

field-
Height

Height,
in charac-
ters, of the
field when
displayed
in a user
interface.

1 Integers greater than zero

does-
Not-
Take-
Lo-
cale

Defines
whether
element
takes locale
specifica-
tion.

1
(does
not
take
lo-
cale
spec-
ifi-
ca-
tions)

0 or 1

can-
BeUsedIn-
Sort

Use this
option if
this attribute
value can
be used
for sorting
of search
results.

0
(not
used
in
sort)

0 or 1

can-
BeUsedIn-
Search-
Form

Use this
option if
the attribute
value can
be used
in search
forms.

1
(used
in
search
forms)

0 or 1

can-
BeUsedInDis-
play

Use this
option if
the attribute
value can
be used
for display
in search
results.

1
(used
for
dis-
play)

0 or 1

dis-
playTem-
plate

Layout for
value when
used in a
display.
Element
code tags
prefixed
with the ^
character,
used to
represent
the value
in the tem-
plate. For
example:
<i>^my_element_code</i>.

HTML

dis-
play-
De-
lim-
iter

Delimiter to
use between
multiple val-
ues.

,
(comma)

Text

vo-
cab-
u-
lary

Selects
which vo-
cabulary
will be
searched.

All vocabularies’ => ;’LC Subject Headings’ =>
‘cs:http://id.loc.gov/authorities/subjects’; ‘LC Name Authority File’ =>
‘cs:http://id.loc.gov/authorities/names’; ‘LC Subject Headings for Children’ =>
‘cs:http://id.loc.gov/authorities/childrensSubjects’; ‘LC Genre/Forms File’ =>
‘cs:http://id.loc.gov/authorities/genreForms’; ‘Thesaurus of Graphic Materials’
=> ‘cs:http://id.loc.gov/vocabulary/graphicMaterials’; ‘Preservation Events’ =>
‘cs:http://id.loc.gov/vocabulary/preservationEvents’; ‘Preservation Level Role’
=> ‘cs:http://id.loc.gov/vocabulary/preservationLevelRole’; ‘Cryptographic Hash
Functions’ => ‘cs:http://id.loc.gov/vocabulary/cryptographicHashFunctions’;
‘MARC Relators’ => ‘cs:http://id.loc.gov/vocabulary/relators’; ‘MARC Coun-
tries’ => ‘cs:http://id.loc.gov/vocabulary/countries’; ‘MARC Geographic
Areas’ => ‘cs:http://id.loc.gov/vocabulary/geographicAreas’; ‘MARC Lan-
guages’ => ‘cs:http://id.loc.gov/vocabulary/languages’; ‘ISO639-1 Lan-
guages’ => ‘cs:http://id.loc.gov/vocabulary/iso639-1’; ‘ISO639-2 Languages’
=> ‘cs:http://id.loc.gov/vocabulary/iso639-2’; ‘ISO639-5 Languages’ =>
‘cs:http://id.loc.gov/vocabulary/iso639-5’;

86 Chapter 1. Contents

CollectiveAccess Documentation, Release 1.8

Attribute settings: GeoNames

Represents one or more latitude/longitude coordinates

Settings Description Default Values
field-
Width

Width, in characters, of the field when displayed in a user interface. 60 Integers
greater
than zero

field-
Height

Height, in characters, of the field when displayed in a user interface. 1 Integers
greater
than zero

mustNot-
BeBlank

Use this option if this attribute value must be set to some value, if, in
other words, it must not be blank.

0 (can be
blank)

0 or 1

doesNot-
TakeLo-
cale

Defines whether element takes locale specification. 1 (does not
take locale
specifications)

0 or 1

can-
BeEmpty

Use this option if you want to allow empty attribute values. This – of
course – only makes sense if you bundle several elements in a con-
tainer.

0 0 or 1

can-
BeUsedIn-
Sort

Use this option if this attribute value can be used for sorting of search
results.

0 (not used in
sort)

0 or 1

can-
BeUsedIn-
Search-
Form

Use this option if the attribute value can be used in search forms. 1 (used in
search forms)

0 or 1

can-
BeUsedInDis-
play

Use this option if the attribute value can be used for display in search
results.

1 (used for dis-
play)

0 or 1

dis-
playTem-
plate

Layout for value when used in a display. Element code tags prefixed
with the ^ character, used to represent the value in the template. For
example: <i>^my_element_code</i>.

HTML

display-
Delimiter

Delimiter to use between multiple values. , (comma) Text

Attribute settings: Files

Uploaded file

1.9. Metadata Elements 87

CollectiveAccess Documentation, Release 1.8

Settings Description Default Val-
ues

doesNot-
TakeLo-
cale

Defines whether element takes locale specification. 1 (does not take
locale specifica-
tions)

0
or
1

can-
BeUsedInDis-
play

Use this option if the attribute value can be used for display in search results. 1 (used for dis-
play)

0
or
1

dis-
playTem-
plate

Layout for value when used in a display. Element code tags prefixed with
the ^ character, used to represent the value in the template. For example:
<i>^my_element_code</i>.

HTML

display-
Delim-
iter

Delimiter to use between multiple values. , (comma) Text

Attribute settings: Media

Uploaded media (image, sound video).

Settings Description Default Val-
ues

doesNot-
TakeLo-
cale

Defines whether element takes locale specification. 1 (does not take
locale specifica-
tions)

0
or
1

can-
BeUsedInDis-
play

Use this option if the attribute value can be used for display in search results. 1 (used for dis-
play)

0
or
1

dis-
playTem-
plate

Layout for value when used in a display. Element code tags prefixed with
the ^ character, used to represent the value in the template. For example:
<i>^my_element_code</i>.

HTML

display-
Delim-
iter

Delimiter to use between multiple values. , (comma) Text

88 Chapter 1. Contents

CollectiveAccess Documentation, Release 1.8

Attribute settings: Taxonomy

Settings Description Default Values
fieldWidth Width, in characters, of the field when displayed in a user interface. 60 Integers

greater
then zero

doesNot-
TakeLocale

Defines whether measurement takes locale specification. 1 (does not
take locale
specifications)

0 or 1

restrict-
ToOccur-
renceType-
Idno

Insert idno of a occurrence type here to restrict the lookup mecha-
nism to that type.

idno

can-
BeUsedIn-
Sort

Use this option if this attribute value can be used for sorting of search
results.

0 (not used in
sort)

0 or 1

can-
BeUsedIn-
Search-
Form

Use this option if the attribute value can be used in search forms. 1 (used in
search forms)

0 or 1

can-
BeUsedInDis-
play

Use this option if the attribute value can be used for display in search
results.

1 (used for
display)

0 or 1

dis-
playTem-
plate

Layout for value when used in a display. Element code tags prefixed
with the ^ character, used to represent the value in the template. For
example: <i>^my_element_code</i>.

HTML

displayDe-
limiter

Delimiter to use between multiple values. , (comma) Text

1.9. Metadata Elements 89

CollectiveAccess Documentation, Release 1.8

Attribute settings: Entities

Settings Description Default Values
field-
Width

Width, in characters, of the field when displayed in a user interface. 60 Integers
greater
then zero

doesNot-
TakeLo-
cale

Defines whether measurement takes locale specification. 1 (does not
take locale
specifications)

0 or 1

can-
BeUsedIn-
Sort

Use this option if this attribute value can be used for sorting of search
results.

1 (used in sort) 0 or 1

can-
BeUsedIn-
Search-
Form

Use this option if the attribute value can be used in search forms. 1 (used in
search forms)

0 or 1

can-
BeUsedInDis-
play

Use this option if the attribute value can be used for display in search
results.

1 (used for dis-
play)

0 or 1

dis-
playTem-
plate

Layout for value when used in a display. Element code tags prefixed
with the ^ character, used to represent the value in the template. For
example: <i>^my_element_code</i>.

HTML

display-
Delimiter

Delimiter to use between multiple values. , (comma) Text

Attribute settings: Color

Stores color values. User interface typically provides a color picker. Values are stored internally as RGB hex color
values.

90 Chapter 1. Contents

CollectiveAccess Documentation, Release 1.8

Settings Description Default Values
field-
Width

Width, in characters, of the field when displayed in a user interface. 40 Integers
greater then
zero

field-
Height

Height, in characters, of the field when displayed in a user interface. 1 Integers
greater then
zero

re-
quireValue

Use this option if you want an error to be thrown if this measurement
is left blank.

0 (can be
blank)

0 or 1

doesNot-
TakeLo-
cale

Defines whether measurement takes locale specification. 1 (does not
take locale
specifications)

0 or 1

can-
BeUsedIn-
Sort

Use this option if this attribute value can be used for sorting of search
results.

1 (used in sort) 0 or 1

can-
BeUsedIn-
Search-
Form

Use this option if the attribute value can be used in search forms. 1 (used in
search forms)

0 or 1

can-
BeUsedInDis-
play

Use this option if the attribute value can be used for display in search
results.

1 (used for
display)

0 or 1

dis-
playTem-
plate

Layout for value when used in a display. Element code tags prefixed
with the ^ character, used to represent the value in the template. For
example: <i>^my_element_code</i>.

HTML

display-
Delimiter

Delimiter to use between multiple values. , (comma) Text

showHex-
Value-
Text

Display the hex value of the selected color below the color chip. 0 (don’t show) 0 or 1

showRG-
BValue-
Text

Display the RGB value of the selected color below the color chip. 0 (don’t show) 0 or 1

de-
fault_text

Default color value. Hex color
value (Ex.
FFCC33)

allowDu-
plicate-
Values

Allow duplicate values to be attached to a record. 0 (don’t allow
duplicates)

0 or 1

Attribute settings: File size

Accepts digital file size values with commonly used suffixes: B, KB, KiB, MB, MiB, GB, GiB, TB, Tib, PB and PiB.
Available from version 1.7.9.

1.9. Metadata Elements 91

CollectiveAccess Documentation, Release 1.8

Settings Description Default Values
field-
Width

Width, in characters, of the field when displayed in a user interface. 40 Integers
greater
then zero

field-
Height

Height, in characters, of the field when displayed in a user interface. 1 Integers
greater
then zero

re-
quireValue

Use this option if you want an error to be thrown if this measurement
is left blank.

0 (can be
blank)

0 or 1

doesNot-
TakeLo-
cale

Defines whether measurement takes locale specification. 1 (does not
take locale
specifications)

0 or 1

can-
BeUsedIn-
Sort

Use this option if this attribute value can be used for sorting of search
results.

1 (used in sort) 0 or 1

can-
BeUsedIn-
Search-
Form

Use this option if the attribute value can be used in search forms. 1 (used in
search forms)

0 or 1

can-
BeUsedInDis-
play

Use this option if the attribute value can be used for display in search
results.

1 (used for dis-
play)

0 or 1

dis-
playTem-
plate

Layout for value when used in a display. Element code tags prefixed
with the ^ character, used to represent the value in the template. For
example: <i>^my_element_code</i>.

HTML

display-
Delimiter

Delimiter to use between multiple values. , (comma) Text

allowDu-
plicate-
Values

Allow duplicate values to be attached to a record. 0 (don’t allow
duplicates)

0 or 1

1.9.2 Information Services

CollectiveAccess supports several external information services to attached metadata to CollectiveAccess records. It
does this by performing a lookup operation at the remote service and then allowing you to pick a value from a results
list. It stores core information about the referenced piece of data and a reference (URI) to the original resource. To
configure metadata fields in the user interface, select the InformationService or LCSH metadata element type.

InformationService is also a plugin API that makes it easy to add support for other external services. The exact
information stored locally differs from plugin to plugin.

• Library of Congress Plugins (LC)

• Example LC installation profile code

• Information Services Plugins

• Example Information Service installation profile code

• Implementing new plugins

92 Chapter 1. Contents

CollectiveAccess Documentation, Release 1.8

Library of Congress Plugins (LC)

• LC subject headings

• LC Name Authority file

• LC subject headings for children

• LC Genre/Forms File

• Thesaurus of Graphic Materials

• Preservation Events

• Preservation Level Role

• Cryptographic Hash Functions

• MARC Relators

• MARC Countries

• MARC Geographic Areas

• MARC Languages

• ISO639-1 Languages

• ISO639-2 Languages

• ISO639-5 Languages

Example LC installation profile code

<metadataElement code="lcsh_terms" datatype="LCSH">
<labels>

<label locale="en_US">
<name>Library of Congress Subject Headings</name>

<description>Library of Congress Subject headings describing this object.</
→˓description>
</label>

</labels>
<settings>

<setting name="fieldWidth">80</setting>
<setting name="fieldHeight">1</setting>
<setting name="vocabulary">cs:http://id.loc.gov/authorities/subjects</setting>

</settings>
<typeRestrictions>
<restriction code="ca_objects">
<table>ca_objects</table>

<settings>
<setting name="minAttributesPerRow">0</setting>
<setting name="maxAttributesPerRow">100</setting>
<setting name="minimumAttributeBundlesToDisplay">1</setting>

</settings>
</restriction>

</typeRestrictions>
</metadataElement>

1.9. Metadata Elements 93

http://id.loc.gov/authorities/subjects.html
http://id.loc.gov/authorities/names.html
http://id.loc.gov/authorities/childrensSubjects.html
http://id.loc.gov/authorities/genreForms.html
http://id.loc.gov/vocabulary/graphicMaterials.html
http://id.loc.gov/vocabulary/preservation.html
http://id.loc.gov/vocabulary/preservation/preservationLevelRole.html
http://id.loc.gov/vocabulary/preservation/cryptographicHashFunctions.html
http://id.loc.gov/vocabulary/relators.html
http://id.loc.gov/vocabulary/countries.html
http://id.loc.gov/vocabulary/geographicAreas.html
http://id.loc.gov/vocabulary/languages.html
http://id.loc.gov/vocabulary/iso639-1.html
http://id.loc.gov/vocabulary/iso639-2.html
http://id.loc.gov/vocabulary/iso639-5.html

CollectiveAccess Documentation, Release 1.8

Information Services Plugins

Getty Vocabularies

AAT (Art and Architecture Thesaurus), TGN (Thesaurus of Geographic Names), and ULAN (The Union
List of Artist Names) are all provided via SparqlEndpoint Linked Open Data Service by the Getty Vo-
cabularies. None of these 3 plugins has any custom settings on element level, but they share a more
comprehensive configuration in the configuration file Linked_data.conf . The default configuration should
work for most use cases.

ALA-National Species List

“Open access to the Atlas of Living Australia’s biodiversity data”

CollectiveAccess

This plugin allows you to reference records in remote CollectiveAccess instances. Available settings are
as follows:

Table 1: CollectiveAccess Information Service
Setting Name Description Example
service Set service setting to ‘CollectiveAc-

cess’ to use this plugin
CollectiveAccess

baseURL URL used to query the information
service

http://localhost/admin/

table valid CollectiveAccess table name ca_entities
user_name User name to authenticate with on

remote system
webservice

password Password to authenticate with on re-
mote system

/

labelFormat Display template to format query re-
sult labels

^ca_entities.preferred_labels

detailFormat Display template to format detailed
information blocks

^ca_objects.preferred_labels
(^ca_objects.idno)

Encyclopedia of Life (EOL)

“Global acccess to knowledge about life on Earth”

Iconclass

“A multilingual classification system for cultural content”

ResourceSpace

“ResourceSpace is a web-based Digital Asset Management software offering a solution for organising
and sharing files”

94 Chapter 1. Contents

http://localhost/admin/

CollectiveAccess Documentation, Release 1.8

VIAF

“Open access to linked names for the same entity across the world’s major name authority files, including
national and regional variations in language, character set, and spelling.”

Wikipedia

This service allows referencing Wikipedia articles. Available settings are:

Table 2: Wikipedia Information Service Installation Profile Settings
Setting Name Description Example
service Set service setting to ‘Wikipedia’ to

use this plugin
Wikipedia

lang 2- or 3-letter language code for
Wikipedia to use. Defaults to en

en

Wikipedia Display Template Options

This plugin can pull in data for local display. For example, both the abstract and preview image are available in bundle
displays. Suppose your wikipedia metadata element has the code wikipedia. You can reference additional properties
about a referenced article like this:

ca_objects.wikipedia.<property>

Where property is one of the following:

Table 3: Wikipedia Information Service Installation Profile Settings
Setting Name Description
image_thumbnail Image thumbnail URL
image_thumbnail_width Width of image thumbnail. Box is capped at 200px by 200px
image_thumbnail_height Height of image thumbnail. Box is capped at 200px by 200px
image_viewer_url (Valid for v1.5.1) URL for Wikipedia’s full screen image viewer
title Title of the Wikipedia article
pageid Numeric page identifier
fullurl URL for the article
canonicalurl Canonical URL for the article
extract Extract of the article, usually a HTML representation of the full article
abstract CollectiveAccess tries to extract the first paragraph from the article to provide a

shorter abstract. This is usually the part shown above the table of contents but
extraction might fail for poorly formatted articles

WorldCat

To use WorldCat you’ll need either a valid OCLC Z39.50 login or WorldCat Web Search API key. The two
connection method have different technical requirements but offer identical functionality. Note that your
OCLC user agreement may prohibit you from using the Web Search API for cataloguing activity. Consult
your OCLC service representative as to your rights before using the API. Your PHP installation must have
cURL support to use the Web Search API. PHP must be built with YAZ support to use Z39.50. YAZ is
available as a standard package on many Linux distributions and installation is generally straightforward.

1.9. Metadata Elements 95

http://meta.wikimedia.org/wiki/List_of_Wikipedias
https://help.oclc.org/Metadata_Services/Z3950_Cataloging
https://www.oclc.org/developer/develop/web-services/worldcat-search-api.en.html
https://www.php.net/manual/en/book.curl.php
https://www.php.net/manual/en/book.yaz.php

CollectiveAccess Documentation, Release 1.8

Specify your Web Search API key or Z39.50 login in App.conf. The entries are:

• worldcat_api_key

• worldcat_z39.50_user

• worldcat_z39.50_password

WorldCat Options

You can use WorldCat as a metadata element type “information service”, but you can also use it to import
bibliographic data from WorldCat directly into your CollectiveAccess system using the WorldCat import
interface, available in the “Import” menu. The importer works much as the general data importer, but with
a specialized interface for interactively locating and retrieving one or more entries from WorldCat. For
more information, read the <PLACE LINK HERE> Importer documentation.

Example Information Service installation profile code

<metadataElement code="my_element" datatype="InformationService">
<labels>
<label locale="en_US">

<name>My InformationService Element</name>
</label>

</labels>
<settings>
<setting name="service"><!-- enter service here --></setting>

</settings>
<typeRestrictions>
<restriction code="r1">

<table>ca_objects</table>
<settings>

<setting name="minAttributesPerRow">0</setting>
<setting name="maxAttributesPerRow">255</setting>
<setting name="minimumAttributeBundlesToDisplay">1</setting>

</settings>
</restriction>

</typeRestrictions>
</metadataElement>

Implementing new plugins

InformationService implementations reside in app/lib/core/Plugins/InformationService and should implement
IWLPlugInformationService and extend BaseInformationServicePlugin. The class name must be “WLPlugInforma-
tionService<Service>” and the file name “<Service>.php”.

It can provide additional settings using the static $s_settings variable, usually derived from
$g_information_service_settings_<Service>. It should set the “NAME” property of the info array in the con-
structor.

The Wikipedia implementation is relatively simple and uses most of the available features (except getDataForSearchIn-
dexing()) so you could use that as a template.

Core functions

The core functions you must implement are:

96 Chapter 1. Contents

https://github.com/collectiveaccess/providence/blob/master/app/lib/core/Plugins/IWLPlugInformationService.php
https://github.com/collectiveaccess/providence/blob/master/app/lib/core/Plugins/InformationService/BaseInformationServicePlugin.php
https://github.com/collectiveaccess/providence/blob/master/app/lib/core/Plugins/InformationService/Wikipedia.php

CollectiveAccess Documentation, Release 1.8

public function lookup($pa_settings, $ps_search, $pa_options=null);

where $pa_settings is an array containing the settings for this particular element (including the ones you provided) and
$ps_search is the search expression provided by the user. The function should return an array with the “results” key
being a list results for the given search expression. Each result should have a label, url and idno.

public function getExtendedInformation($pa_settings, $ps_url);

This should return an array with the “display” key set to an HTML representation of the given record (identified by the
URL/URI). You can either go and look the detailed data up remotely or, for instance, call getExtraInfo() to get locally
stored data (see below).

Optional functions

The functions listed below are optional and have default (empty) implementations in BaseInformationServicePlugin
so it doesn’t hurt to leave them out of your plugin entirely. They can be used to provide useful features though.

public function getExtraInfo($pa_settings, $ps_url);

Returns an array of key=>value pairs containing extra information to be stored locally, alongside the id, the display
label and the URL. This data can be accessed using SearchResult::get(), so you should keep the keys alphanumeric,
lowercase and without spaces.

public function getDataForSearchIndexing($pa_settings, $ps_url);

Returns a list of strings that are added to the search index for the record associated with this attribute. This allows you
to add additional data points that can be used to find the CollectiveAccess record but are not necessarily available for
display. Note that the data returnd by getExtraInfo() is not indexed for search, so you might have to add the same data
twice.

public function getDisplayValueFromLookupText($ps_text);

The default behavior is to use the (selected) label returned by the lookup() function as display value for attribute values.
That can be undesirable for use cases like the AAT where one the one hand you want a lot of identifying information
in the lookup dropdown but on the other you probably don’t care about all that info once the “relationship” has been
created because the keyword is doing its job in the background (making the associated record findable). Maybe you
just want a simple and short label instead to save space.

This function allows you to mangle the lookup text to create a different display value. The lookup text usually has the
URL in it, so you could even look up additional info to pull in here if you wanted. An example can be found in the
AAT implementation, where we do some regular expression magic to convert lookup texts:

before: [300025342] swordsmiths [people in crafts and trades by product, people in
→˓crafts and trades]
after: swordsmiths

1.9.3 Measurements

CollectiveAccess can

1.9.4 Date and Time Formats

CollectiveAccess can process dates and times in a variety of formats. Internally, CA represents date/times as a range
with a beginning and an end. This means that your dates can be as precise or imprecise as necessary. For example,
2007, June 2007, June 7 to June 10 2007 and June 7 2007 are all valid dates. They are stored internally as

1.9. Metadata Elements 97

https://github.com/collectiveaccess/providence/blob/master/app/lib/core/Plugins/InformationService/BaseInformationServicePlugin.php
https://github.com/collectiveaccess/providence/blob/master/app/lib/core/Plugins/InformationService/AAT.php

CollectiveAccess Documentation, Release 1.8

• January 1 2007 @ 00:00:00am - December 31 2007 @ 12:59:59pm

• June 1 2007 @ 00:00:00am - June 30 2007 @ 12:59:59pm

• June 7 2007 @ 00:00:00am - June 10 2007 @ 12:59:59pm

• June 7 2007 @ 00:00:00am - June 7 2007 @ 12:59:59pm

respectively.

The actual low-level storage format represents dates as a pair of numbers representing the start and end of a date range
rather than text. This allows CA to properly search and sort dates no matter what format and language is used to enter
them. It also allows CA to impose a standard display format on dates regardless of their original input format and to
re-format and translate dates on the fly without requiring changes to your underlying data.

Languages and Localization

Date/time expressions are output in the users’ current locale language. Language specific settings are defined in
TimeExpressionParser locale configuration files stored in app/lib/core/Parsers/TimeExpressionParser

Configuration

It is possible to configure how dates and times are parsed and displayed using the datetime.conf configuration file

Valid input formats

Year 2016, 1950 ad; 450 b.c.; 40
mya

simple years as well as AD and BC dates and geologic time (mya aka
“millions of years ago”) are supported

Month
and year

June 2016, 6/2016

Specific
date

June 6 2016; June 7, 2016;
6/7/2016; 6/7/16

Support for European style dates (eg. day first rather than month first)
is based upon users’ current locale setting

For numeric dates (eg. 6/7/2007) multiple delimiters are supported. For example, in the US localization the following
dates are all valid and equivalent:

6/7/2007

6-7-2007

6.7.2007

7-JUN-2007

7-JUN-07

Dates with times

You can specify a time for any date by following the date with a time expression. Both 24 hour and 12 hour (AM/PM)
times are supported, and you can specify times to the minute or second. For readability you can optionally separate
the date and time with a separator. For the US localization allowable separators are:

at, @

98 Chapter 1. Contents

CollectiveAccess Documentation, Release 1.8

Date with 24 hour
time

June 7, 2007 16:43; 6/7/2007 @ 16:43; June 7 2007 at
16:43

Specified to the minute:
4:43pm

Date with 12 hour
time

June 7, 2007 4:43:03pm; 6/7/2007 @ 4:43:03p.m. Time specified to the second

If you omit the time then a time is assumed depending upon whether the date is the beginning, end or both of a date
range. For dates at the beginning of a range, the default time is 00:00:00 (midnight). For dates at the end of a range
the default time is 11:59:59pm. This means that if you input a date without a time the entire day is encompassed.

The elements of a time specification may be delimited in multiple ways. For the US localization the following delim-
iters are supported:

:
.

Thus the following times are valid and equivalent:

4.15:05pm

16.15.05

4:15:05pm

16:15:05

You can also enter date/times in ISO 8601 format. Note that CollectiveAccess has no provision for recording time
zones. All times are assumed to be in the same time zone and any time zone information in ISO-format dates is
currently discarded (this may change in a future release).

Date ranges

You can specify a date range by inputting two dates (with or without times) separated by a range separator. For the US
localization, the range separators are:

to, -, and, .., through

For readability you can also include an optional range indicator before the first date. For the US localization range
indicators are:

from, between

Examples of date ranges:

June 5, 2007 - June 15, 2007

Between June 5, 2007 and June 15 2007

From 6/5/2007 to 6/15/2007

6/5/2007 @ 9am .. 6/5/2007 @ 5pm

6/5 .. 6/15/2007 (Note implicit year in first date)

6/5 at 9am - 5pm (Note implicit date in current year with range of times)

Unbounded dates

Date ranges where one end is unspecified can be expressed in various. ways. Ranges with a specified start date but no
end date are considered to be ongoing and can be expressed in any of the following (using the example start date June
6 1944):

1.9. Metadata Elements 99

CollectiveAccess Documentation, Release 1.8

6/6/1944 to present

6/6/1944 - present

6/6/1944 .. present

after 6/6/1944

6/6/1944 -

6/6/1944 - ?

Date ranges where the end date is specified and the start date unspecified are considered to include ‘’any” date prior
to the end date. They may be specified using the formats:

before 6/6/1944

? - 6/6/1944

Special expressions

There are a number of shorthand expressions for common dates. Examples below are for the English localization, but
all localizations support them:

today (current date to the day)

yesterday (yesterday’s date to the day)

tomorrow (tomorrow’s date to the day)

now (current date/time to the second)

1990’s (decade)

199- (AACR2 format decade)

20th century (century)

19– (AACR2 format century)

Early/mid/late dates

As of version 1.7.7 it is possible to qualify decade and century dates and date ranges with “early”, “mid” and “late”
modifiers. CollectiveAccess will interpret “early” centuries expressions as being between the start of the century and
the 21st year. Eg. “Early 18th Century” will be stored as 1 January 1700 - 31 December 1720. “Late” dates are
considered to be between the 81st year and the end of the century. Eg “Late 18th Century” will be stored as 1 January
1780 - 31 December 1799. “Mid 18th Century” will be stored as 1 January 1740 - 31 December 1760. For decades are
treated similarly: “Early 1920s” is stored as 1 January 1920 - 31 December 1923. “Mid 1920s” is stored as 1 January
1923 to 31 December 1927. “Late 1920s” is stored as 1 January 1926 to 31 December 1929.

The rules for mapping early, mid and late ranges to concrete dates are current built into the parser and cannot be
changed. They may be made configurable in future versions.

Uncertain dates

You can express uncertain dates in two ways:

Preface the date with a “circa” specifier (in English, use “circa”, “c” or “ca”). Add a question mark (“?”)
to the end of the date

For example:

100 Chapter 1. Contents

CollectiveAccess Documentation, Release 1.8

circa 1955

ca June 1865

May 2 1921?

As of version 1.1 you can also use “circa” with date ranges:

circa 1950 - 1956

Imprecise dates

“Circa” indicates merely that the date is not precisely known. It does not convey an information about the margin of
error of the date estimate. If you want to specify a numeric margin of error for a date/time us expressions such as
these:

June 10 1955 ~ 10d (June 10th 1955 plus or minus 10 days)

1955 ~ 3y (1955 plus or minus 3 years)

Eras

All dates are assumed to be in the Common Era (CE) unless otherwise specified. In the English localization you can
specify a date before the Common Era by appending “BCE”:

850 BCE

You may also append “CE” for common era dates if you wish. The English localization also supports use of “AD” and
“BC” Other localizations may use different modifiers.

Year-less dates

It is possible to enter dates that lack years if needed. Year-less dates are restricted to delimited date format input and
are available at the month and month/day level:

6/10/????

6/????

Note that any number of question marks will create a valid date/time.

Seasonal dates

As of version 1.1 of CollectiveAccess, seasonal dates are supported. Simply enter the name of the season optionally
followed by a year (the current year is assumed if there is no year input), and CollectiveAccess will convert the date
to numbers. In the English locale, valid seasonal input might include:

Summer 2011

Fall 2009

These expressons map to specific dates, June 21 2011 to September 20 2011 for Summer for example.

1.9. Metadata Elements 101

CollectiveAccess Documentation, Release 1.8

Quarter-century dates

Ranges of years falling on quarter centuries may be input as century/quarter pairs. For example:

20 Q3

is equivalent to 1950 - 1975 (3rd quarter of 20th century). Quarter century expressions are always in the Common Era.
They cannot be used for BC dates.

Undated

You may indicate a date-less item using “undated” or “unknown” (in the standard English translation, at least). “Un-
dated” date expressions imply the absence of date, and are not searchable. They exists only to indicate that no date is
known.

Attribute types represent all of the different varieties of fields supported by CollectiveAccess. Each one is slightly
different because each is designed to accept and normalized data in different formats. See below for more details
about the unique nature of each Attribute type. The full list of attribute types is listed here.

Type code Description Settings
Container Unlike all other attribute types, containers do not represent data values. Rather their sole function is to organize attributes into groups for display. In a multi-attribute value set (for example an address with separate attributes for street number, city, state, country and postal code), there will be at least one container serving as the “root” (or top) of the attribute hierarchy. Other containers may serve to further group items in the multi-attribute set into sub-groups displayed on separate lines of a form. Attribute settings: Container
Text Represents a free-text value. Attribute settings: Text
DateRange Represents an historic date range accepting date/time range expressions in the formats acceptedby the CA TimeExpressionParser module. Attribute settings: DateRange
List Represents a value chosen from a drop-down list populated with values from a specified list as defined in the ca_lists table. Attribute settings: List
Geocode Represents one or more latitude/longitude coordinates. Coordinates can be entered as decimal latitude/longitude pairs (ex. 40.321,-74.55) or in degrees-minutes-seconds format (ex. 40° 23’ 10N, 74° 30’ 5W). Multiple latitude/longitude coordinates should be separated with semicolons (“;”). Non-coordinate entries are converted to coordinates using the Google Maps Geocoding service, which works well for most full and partial addresses worldwide. To unambiguously distinguish coordinate data from address data to be geocoded, it is strongly suggested that coordinate lists be enclosed in square brackets (ex. [40.321,-74.55; 41.321,-74.55;41.321,-75.55;40.321,-75.55;40.321,-74.55]. More notes on the Geocode types [GeocodeAttributeTypeNotes here] Attribute settings: Geocode
Url Accepts a properly formatted URL value. Currently does fairly limited checking on overall syntax and specified protocol. May be expanded in the future to verify the URL’s HTTP return code. Attribute settings: Url
Currency Accepts a currency value composed of a currency specifier and a decimal number. The current specifier should be a standard three letter currency code (see http://www.xe.com/iso4217.php) or one of the following special currency symbols: $ (US Dollar), ¥ (Japanese Yen), £ (English Pound) or C (Euro). Examples of valid input: $14.95, £32.50, CAD 20 [Canadian dollars], DKK 75 [Danish Kroner] Attribute settings: Currency
Length Accepts length measurements in metric, English and points units (the latter being typographical points). Entries are simply a numeric quantity + a unit specifier. Supported units specifiers are described on the measurement input formats page. While any supported length unit may be used for input, output units are dictated by the user’s units preference setting. This preference may be set to use English units, metric units or to display the measurement using the units with which it was initially entered. Attribute settings: Length
Weight Accepts weight measurements in metric and English units. Entries are simply a numeric quantity + a unit specifier. Supported units specifiers are described on the measurement input formats page. While any supported unit of weight may be used for input, output units are dictated by the user’sunits preference setting. This preference may be set to use English units, metric units or to display the measurement using the units with which it was initially entered. Attribute settings: Weight
TimeCode Accepts time offsets in a number of time code formats. Time code values are typically used to express a duration or temporal position within time-based media (eg. a location in a video or audio stream). Formats supported include: hh:mm:ss (ex. 2:10:52 = 2 hours, 10 minutes, 52 seconds); XXh XXm XXs (ex. 2h 10m 52s); or XXs (ex. 7852s = 7852 seconds). Attribute settings: TimeCode
Integer Accepts integer values, but no floats. In effect everything that contains only the digits 0-9 is accepted. Attribute settings: Integer
Numeric Accepts numeric values. Numeric strings consist of optional sign, any number of digits, optional decimal part and optional exponential part. Thus +0123.45e6 is a valid numeric value. Hexadecimal notation (0xFF) is allowed too but only without sign, decimal and exponential part. Attribute settings: Numeric
LCSH Library of Congress Subject Heading value. Takes LCSH heading or first part of heading (the LCSH search service only supports truncation searches), does a lookup and returns a list of possible matches. Selected LCSH heading is stored as both text and the service URL identifier. Attribute settings: LCSH
GeoNames GeoNames value. Takes search text, passes it to the GeoNames search service and provides a dropdown with search results (ordered by score). Selected geoname is stored as both text (name, country, continent and ID) and the service URL identifier. Attribute settings: GeoNames
File Uploaded file. CA will try to identify the file and extract limited metadata, but even if it can’t identify the file it will accept and store it. Attribute settings: File
Media Uploaded media (image, sound video). CA will try to identify the file, extract metadata and create derivatives as configured in media_processing.conf. If CA cannot identify and parse the file it will reject it. Attribute settings: Media
Taxonomy Taxonomic name as returned from a taxonomic name service. Currently support lookups into ITISand uBio services. Attribute settings: Taxonomy
InformationService Remote webservice lookup. Lookup values web services including the Getty TGN, ULAN and AAT, another CollectiveAccess instance, Wikipedia, WorldCat and uBio. See Information Services. Attribute settings: InformationService
ObjectRepresentations Reference object representations within your CollectiveAccess instance. Attribute settings: ObjectRepresentations
Entities Entity value. Searches the CollectiveAccess entity authority for given text and creates a typeless pseudo-relationship with the selected entity. Attribute settings: Entities
Places Place value. Searches the CollectiveAccess place authority for given text and creates a typeless pseudo-relationship with the selected place (typeless). Can be restricted to a single place type. Attribute settings: Place
Occurrences Occurrence value. Searches the CollectiveAccess occurrence authority for given text and creates a typeless pseudo-relationship with the selected occurrence (typeless). Can (and should) be restricted to a single occurrence type. Attribute settings: Occurrence
Collections Collection value. Searches the CollectiveAccess collection authority for given text and creates a typeless pseudo-relationship with the selected collection (typeless). Can be restricted to a single occurrence type. Attribute settings: Collection
StorageLocations Storage Location value. Searches the CollectiveAccess storage location authority for given text and creates a typeless pseudo-relationship with the selected storage location (typeless). Can be restricted to a single storage location type. Attribute settings: StorageLocation
Loans Loan value. Searches the CollectiveAccess loan authority for given text and creates a typeless pseudo-relationship with the selected loan (typeless). Can be restricted to a single occurrence type. Attribute settings: Loan
Movements Movement value. Searches the CollectiveAccess movement authority for given text and creates a typeless pseudo-relationship with the selected movement (typeless). Can be restricted to a single movement type. Attribute settings: Movement
Objects Object value. Searches the CollectiveAccess object authority for given text and creates a typeless pseudo-relationship with the selected object (typeless). Can be restricted to a single object type. Attribute settings: Object
ObjectLots Object Lot value. Searches the CollectiveAccess object lot authority for given text and creates a typeless pseudo-relationship with the selected object lot (typeless). Can be restricted to a single object lot type. Attribute settings: ObjectLot
Floorplan Implements an interactive floorplan user interface for place authority records Attribute settings: Floorplan
Color Represents a color in standard RGB hex format (Ex. FFCC33). In the editing interface this data type is typically displayed with a color picker. Attribute settings: Color
Filesize Accepts digital file size values with commonly used suffixes (B, KB, KiB, MB, MiB, GB, GiB, TB, TiB, PB, PiB). Available from version 1.7.9. Attribute settings: Filesize

102 Chapter 1. Contents

https://github.com/collectiveaccess/providence/blob/master/app/conf/attribute_types.conf
http://www.xe.com/iso4217.php

CollectiveAccess Documentation, Release 1.8

1.10 Relationships

To come

1.11 Interstitial Data

• Setting up relationship records in the installation profile

• Setting up relationship records through the graphical user interface

• Editing Relationship Records

As of version 1.4, CollectiveAccess supports relationship records also known as “interstitial” records. This feature
allows cataloguers to describe a relationship beyond simply selecting a relationship type. Let’s say, for example, that
you have two entities that were married for a period of time, and then got divorced. The relationship record allows
you to add a date range, narrative text and/or other metadata elements of your choosing to the interstice between these
two individuals. Relationship records are entirely optional, and in fact won’t be accessible unless a user interface is
defined for the them. Relationship records are not just limited to entities. Any two records can carry this interstitial
description, so long as metadata and a user interface has been created. Other common examples of relationships that
could require interstitial metadata include objects to places; objects to entities; entities to places, etc.

1.11.1 Setting up relationship records in the installation profile

To create a metadata element with an interstitial type restriction in the profile requires adopting some of the syntax
used for relationshipTable names. Here’s how you would add the date range on an entity to entity relationship record:

<metadataElement code="relationshipDate" datatype="DateRange">
<labels>
<label locale="en_US">
<name>Relationship date</name>
<description/>

</label>
</labels>

<settings/>
<typeRestrictions>
<restriction code="r1">
<table>ca_entities_x_entities</table>
<settings>
<setting name="minAttributesPerRow">1</setting>
<setting name="maxAttributesPerRow">1</setting>
<setting name="minimumAttributeBundlesToDisplay">1</setting>

</settings>
</restriction>

</typeRestrictions>
</metadataElement>

After you’ve defined the metadata elements for your relationship record, you need to create the user interface. This
follows the same syntax as the user interfaces for the main tables, except that the user interface “type” is the same
string used in the typeRestriction “table” above:

1.10. Relationships 103

CollectiveAccess Documentation, Release 1.8

<userInterface code="interstitial_entity_ui" type="ca_entities_x_entities">
<labels>
<label locale="en_US">
<name>Interstitial Entity Editor</name>

</label>
</labels>
<screens>
<screen idno="basic" default="1">
<labels>
<label locale="en_US">
<name>Basic info</name>

</label>
</labels>
<bundlePlacements>
<placement code="ca_attribute_relationshipDate">
<bundle>ca_attribute_relationshipDate</bundle>

</placement>
</bundlePlacements>

</screen>
</screens>

</userInterface>

Note that these interstitial records are meant to be small and manageable, so only one screen per user interface is
supported. If other screens are defined they simply won’t appear.

1.11.2 Setting up relationship records through the graphical user interface

Setting up a relationship record through the GUI is essentially just like creating a user interface for any other type of
record. It follows the same steps wherein a metadata element is created and then added to the user interface.

The key difference is what “Type restrictions” are chosen for the elements and what “type” is used to create the user
interface.

IMAGE:

The above metadata element will be used for an entity to entity relationship record.

IMAGE: New UI interface.png

The above user interface (created under Manage > Administration > User Interfaces) will be used for an object to
storage location relationship record.

1.11.3 Editing Relationship Records

Once your metadata elements and user interface editors have been configured, you will notice a small edit icon on
relevant relationships after they’ve been save the first time:

IMAGE: Paperclip.png

Clicking on the “E” will open the relationship record in an overlay.

104 Chapter 1. Contents

CollectiveAccess Documentation, Release 1.8

1.11. Interstitial Data 105

CollectiveAccess Documentation, Release 1.8

1.12 Lists & Authorities

1.12.1 List item intrinsics (ca_list_items)

Name Code Description Mandatory?Default
Identifier idno The list item identifier. Must fol-

low policy defined in configured num-
bering policy if app.conf setting re-
quire_valid_id_number_for_ca_list_items
is set. Must be unique if app.conf setting al-
low_duplicate_id_number_for_ca_list_items
is not set.

Depends
upon
num-
bering
policy

Type type_id A value from the list_item_types list indicating
the type of the record. Stored as an internally
generated numeric item_id. When setting this
value in a data import or via an API call the
item identifier may be used.

Yes null

Parent parent_id Reference to parent record. Will be null if no
parent is defined. When setting this value in a
data import or via an API call the identifier of
the parent place may be used.

No null

List list_id A reference to the list record (ca_lists) of
which the list item is a part. Note that a list
item is always part of a list. It cannot ex-
ist outside of a list. The raw database value
contained list_id is an internally generated nu-
meric list_id. However, when setting this in-
trinsic via an import mapping or API call you
may also use the list’s code.

No

Value item_value Value represented by list item. This is distinct
from the identifier and used to convey a text or
numeric quantity when required.

Yes

Access access Determines visibility of record in public-
facing applications such as Pawtucket. Values
are defined in the access_statuses list. Typi-
cally the list includes values for “public” and
“private” visibility. For historical reasons the
value stored in the intrinsic is the list item’s
value field, not its identifer or label. By con-
vention “0” is interpreted as private and “1” as
public access, although this can be modified or
expanded in app.conf if required.

Yes 0

Status status Records the general cataloguing workflow sta-
tus of the record. Values are defined in the
workflow_statuses list. For historical reasons
the value stored in the intrinsic is the list item’s
value field, not its identifer or label. Unlike ac-
cess values, statuses have no functional impact
on a record. They are merely informations and
intended to provide a simple, straightforward
way to track the cataloguing process.

Yes 0

Icon icon Icon image to display for listitem. No
Color color Highlight color for list item in hex format. No
Is enabled? is_enabled Flag indicating whether list item is available

for use (value set to 1) or not available (value
is 0).

Yes 0

Is default? is_default Flag indicating whether list item is the de-
fault selection for its list (value set to 1) or not
(value is 0).

Yes 0

Rank rank The sort order position of the list item. Must
be a whole number; lower numbers indicate
higher ranking in sort.

Yes 0

106 Chapter 1. Contents

CollectiveAccess Documentation, Release 1.8

1.12.2 List intrinsics (ca_lists)

Name Code Description Mandatory?Default
List code list_code The list identifier. Must be a unique alpha-

numeric code without spaces or punctuation
beyond underscores.

Yes

Is system list? is_system_list Flag indicating whether list is required to sup-
port application functionality (value set to 1)
or is purely for cataloguing purposes (value is
0).

Yes 0

Is hierarchical? is_hierarchical Flag indicating whether list is hierarchical
(value set to 1) or flat (value is 0).

Yes 0

Use as vocabulary? use_as_vocabularyFlag indicating whether list should be used in
vocabulary (keyword) lookups (value set to 1)
or not (value is 0).

Yes 0

Default sort default_sort Specifies the default method to employ to or-
der items in this list. Takes a numeric value
indicating the sort order: 0 = Sort by list item
label 1 = Sort by list item rank 2 = Sort by list
item value 3 = Sort by list item identifier

Yes 0

1.13 User Interfaces

1.14 User Interface Administration

• User Interface Configuration

1.14.1 User Interface Configuration

There are several configuration options that can be set system wide or for individual users that can improve cataloging
efficiency for editing interfaces. These configuration options are set via Manage > Administration> User Interfaces. If
your account does not have access to administration configuration please contact your system administrator. Individual
users can select the User Interface they prefer in Manage > My Preferences > Editing.

1.13. User Interfaces 107

../_static/images/5_1A.png

CollectiveAccess Documentation, Release 1.8

Fig 5.1a: Selecting preferred user interface for record types in Manage > My Preferences > Editing

Creating User Interfaces

It is possible to make multiple Editor Screen Interfaces for record types that are geared to specific cataloging tasks or
users’ working style (see the manual entry for Editor Screens). For example, if a cataloger is responsible for entering
data in only a small subset of metadata elements for a record, a new User Interface can be configured with only those
elements to support that specific workflow.

When creating User Interfaces, access to User Interfaces and User Interface screens can be set at the account, group
and role level to limit availability to subsets of users (see the manual entry for Access Control).

Similarly, users can select User Interfaces for use in Quick Add forms in Manage > My Preferences > Quick Add.
Creating custom User Interfaces for Quick Add screens can be very useful for ensuring a core subset of information is
entered during the Quick Add process. See the manual entry for Relationships for more information on Quick Add.

Fig. 1: Fig 5.1b: Manage > My Preferences > Quick Add

Configuring Metadata Elements in User Interfaces To adjust the configuration of a metadata element within a User
Interface, first edit a User Interface and select the screen the metadata element appears on. Access metadata element
configuration options by clicking the information icon alongside element names in the list of “Elements to display on
this screen”. Settings are specific to the placement of the element within the current User Interface and will not apply
to all placements of the element throughout the system.

Fig. 2: Fig 5.2: Selecting and configuring metadata elements in Manage > Administration > User Interfaces. Clicking
the information icon reveals configuration options for elements within the User Interface screen.

The following selection of options may be useful for customizing complex User Interfaces.

Expand/ Collapse Metadata Elements: Metadata elements within all editors can be expanded and collapsed by
clicking the arrow icon to the right of each element’s label. Users can configure metadata elements to be expanded or
collapsed by default when forms are loaded. In the information window for metadata elements in a User Interface you

108 Chapter 1. Contents

https://manual.collectiveaccess.org/usermanual/creating_records.html#editor-screens
https://manual.collectiveaccess.org/usermanual/manage.html#access-control
https://manual.collectiveaccess.org/usermanual/creating_records.html#relationships
../_static/images/5_1B.png
../_static/images/5_2.png

CollectiveAccess Documentation, Release 1.8

will find two options, “Expand collapse if value exists” and “Expand collapse if no value is present”. Both settings
have the following options: Don’t force (default), Collapse, Expand.

Sort Elements in Repeating Bundles: Sort order and direction for repeatable elements can be configured by select-
ing options from the “Sort using” and “Sort direction” dropdowns. Different sort options are available for different
metadata elements.

Metadata Elements for related records can be dragged and dropped into arbitrary order when the “Format of relation-
ship list” dropdown is set to “Bubbles (draggable)” and “Sort using” is set to “User defined sort order”.

Fig. 3: Fig 5.3: Configuring sort order and format of relationship lists in Manage > Administration > User Interfaces

Configure Help Text and Documentation Links for Metadata Elements: Help text and links to documentation for
metadata elements can be configured for elements or for elements within the context of a specific User Interface.
Help text appears when users hover over the element title and links to documentation are available when clicking the
information icon alongside the title of an element.

Fig. 4: Fig 5.4: Element help text revealed on hover. Information icon linked to URL in “Documentation URL” for
the element

Text entered in the “Description” field and links entered in the “Documentation URL” field for metadata elements in
Manage > Administration > Metadata Elements are available wherever the element is used in a User Interface. Text
entered in the “Descriptive text for bundle” and “Documentation URL” fields in the configuration options for elements
within a User Interface screen in Manage > Administration > User Interfaces will only appear for that specific User
Interface and will override the Metadata Element description and documentation URL.

1.15 Data Dictionary

To come

1.16 Locales

CollectiveAccess supports localizations of its user interface. It also supports multi-lingual metadata - you can add
information translated into many languages to a object or authority record. Whenever a language must be specified,
either to indicate how the UI should be localized or what language metadata is in, a locale code is used.

1.15. Data Dictionary 109

../_static/images/5_3.png
../_static/images/5_4.png

CollectiveAccess Documentation, Release 1.8

Locale codes are comprised of a two or three character country code taken from the ISO 639 standard and a two
character language code taken from the ISO 3166-1 standard joined together by an underscore (“_”) character. For
example, English as spoken in the United States is indicated by en_US. German as spoken in Germany is indicated by
de_DE. An optional dialect specifier may also be added following the country and separated with an underscore when
sub-divisions of languages must be taken into account. (Note: the dialect specification may be dropped in the future;
if you think this should stay let us know.)

Locale-specific information in CA

Locale-related information is stored into three places within CA:

• The list of locales for which CA can accept cataloguing is stored in the ca_locales table in the database.
ca_locales& records simply contain the language, country and dialect codes along with a unique, compact
integer identifier that is used internally to represent the locale.

• Localized text for the user interface is stored in GNU GetText -compatible .po files in the
app/locale/<locale_code> directory (for example: app/locale/en_US). Note that not all locales present in the
ca_locales table will have localization files in app/locale, but that all locales ‘with’ localization files will have a
corresponding record in ca_locales.

• Configuration specifying how date/time expressions are parsed and presented for a given locale are stored in
app/lib/core/Parsers/TimeExpressionParser When creating a new locale it is best to clone an existing locale file
and alter it to suit the new locale.

• CA uses Zend_Locale (from the Zend Framework) to manage other localization data (number formats, country
and language names and the like). The data is stored in app/lib/core/Zend/Locale/Data in files using standard
locale codes.

How locales are selected

Each CA user may select a preferred locale for their user interface; the list of locales is limited to those for which
a user interface translation exists in app/locale. The selected locale is used not only for the user interface but also,
when possible, for displayed content. That is, CA will always try to display catalogued data in the user’s preferred UI
locale. If catalogue data is not available in the user’s selected language then CA will attempt to display the data using
one of the system default locales, as set in the global.conf configuration file. The default locales will be used in order
of listing until catalogue data is found. If no catalogue data exists for the default locales, the CA will display data in
whatever locale does exist.

Translating CA into a new language

For information on how to translate CA into a language for which a translation does not yet exist see the the page on
creating Translations.

1.17 Labels

To come

1.18 Configuring Providence

Providence has many configuration options beyond the initial setup through installation profiles. These options are
handle in .conf files in the app/conf directory of your Providence installation. You will also find a /local folder, where
you should create blank copies of files to customize options.

110 Chapter 1. Contents

http://en.wikipedia.org/wiki/List_of_ISO_639-1_codes
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://www.gnu.org/software/gettext/
http://framework.zend.com/

CollectiveAccess Documentation, Release 1.8

Attention: ALWAYS create a blank local version of your .conf file in app/conf/local and make edits there.
Otherwise your changes can be overwritten.

1.18.1 app.conf

• Structure

• Menus

– Menu bar preferences

– Find menu formatting

– Navigation options

– Show/Hide Representations

– Show/Hide Tables

– Menu bar caching

• Disable

– Editor “disable” switches

– QuickAdd disable switches

– Disable “Add new <object> to lot”

– Show related counts in the inspector?

– Show “add child record” control in editor inspector?

– Set duplication disable

– Set type controls

• Hierarchies

– Strict type hierarchies

– Hierarchy browser items

– Collection hierarchies on the Summary screen

– Show/Hide hierarchy root (Storage Locations & Places)

– Show/Hide child records in search/browse results

– Enable display of collections and objects as a single hierarchy

• Titles + IDs

– Require input id number value to conform to format? (0=no, 1=yes)

– Allow dupe id numbers? (0=no, 1=yes)

– Allow dupe labels? (0=no, 1=yes)

– Entity dupe name?

– Require preferred label? (0=no, 1=yes)

– Require preferred label value be present in a list

1.18. Configuring Providence 111

CollectiveAccess Documentation, Release 1.8

– Allow automated renumbering objects with lot idno + sequence number?

– Label-less objects

– Label-specific sort

• Search

– Search engine configuration

– Browse Panel Styles

– Quicksearch - order and results (“live” search in search box in header)

– Quicksearch - break out by type?

– One table search

– Out of process search indexing

– Caption formatting for search/browse “thumbnail” results

• Features

– Location tracking options

– Movement-based storage location tracking

– Deaccession options

– Library-style check-out of objects

– User generated content

– ResourceSpace import

– WorldCat import

– Taxonomy web services

– Flickr API

– “Rich text” (aka. wysiwyg) editor options

– Enable dependent field visibility feature

– Global template values (Pawtucket content management)

– Site page templates (Pawtucket content management)

– Access Control

– Bundle-level access control

– Type-level access control

– Source-level access control

– Item-level access control

– Administrator

– Set Access

– “Access” inheritance

• Styling

– Theme configuration

112 Chapter 1. Contents

CollectiveAccess Documentation, Release 1.8

– Search Result Reporting configuration

– Record PDF Summary configuration

– Print labels (ie. stickers)

– Annotation options

– Additional theme

• Mapping

– GeoNames web services

– Mapping plugins

• Defaults

– Related item lookup settings

– Default bundle display templates for related bundles (Eg. ca_entities, ca_occurrences, etc.)

– Default template for media viewer caption

– Label type lists

– Default to summary when opening item for editing?

– Find defaults

– Set item display templates

– Default type to use when creating sets

– Timecode output

– Currency settings

– Length settings

– Record duplication

– Log options

– Components

• Media

– Media processing tweaks

– Embedded metadata extraction

– Video preview frame generation

– Document preview page generation

– Batch media processing

– Batch metadata import

– Object representation download options

– Task queue set up (deferred processing of uploaded media)

• Admin

– Character set to use (usually utf-8; might be ISO-8859-1)

– System configuration check options (under “Manage” > “Administrate” > “Configuration Check”)

1.18. Configuring Providence 113

CollectiveAccess Documentation, Release 1.8

– Configuration exporter options

– Object lot inheritance

– Restrict editing of codes for list and metadata elements

– SMS notifications

– Session settings

– Email notifications

• Export

– File names for data export download files

• You’re done. . .

– URL configuration (paths to controllers and themes)

– Paths to other config files

– Path to application plugins

– Path to dashboard widgets

– Password reset parameters

– ID numbering (for objects, object lots and authorities)

– Media and file processing paths

– Formats for form elements

– Proxy server configuration for web services

General configuration of CollectiveAccess is controlled by the app.conf configuration file.

Structure

To make editing app.conf a bit more manageable the file is broken up into several sections grouping related options:
menus, disable switches, hierarchies, titles and identifiers, search, features, access control, styling, mapping, defaults,
media, administration and esoterica (things you probably won’t ever need to change). For sections where a separate
configuration file is also available (Eg. search.conf and the search section) the app.conf section controls only high-level
options, while the file handles detailed configuration.

WHAT: This is the main application configuration file for Providence, designed so that users can easy manage various
system-wide settings in one convenient location.

WHEN TO CUSTOMIZE: App.conf handles most customizations that are not controlled through the UI or profile
(with the notable exceptions of: browse, id number configurations, and additional settings for dates, media and search).
This document is broken into the following sections: Disable, Hierarchies, Titles & Ids, Search, Feature Settings,
Access Control, Styling, Mapping, System Defaults, Media, Admin Configuration and Export.

Menus

Control the “New” and “Find” menus in Providence

114 Chapter 1. Contents

CollectiveAccess Documentation, Release 1.8

Menu bar preferences

By default each of the follow record types has a sub-menu in the top-level “New” menu list out the configured types.
When you choose a type the creation of new record of that type is initiated. If you have several types configured
sub-menus make sense, but if your setup only has one or two types, or is deeply nested then you may want to push the
first level of types directly onto the menu. Setting the directives below will force the first level of the sub-menu onto
the “new” menu itself.

ca_object_lots_no_new_submenu = 0
ca_objects_no_new_submenu = 0
ca_entities_no_new_submenu = 0
ca_collections_no_new_submenu = 0
ca_loans_no_new_submenu = 0
ca_movements_no_new_submenu = 0
ca_tours_no_new_submenu = 0
ca_object_representations_no_new_submenu = 0

Find menu formatting

By default only the top-level item classes (“objects”, “entities”, “collections”) appear in the find menu Set the following
to a non-zero value to break out each top-level item into a submenu with types This allows you do to type-specific
searches and browses

ca_objects_breakout_find_by_type_in_submenu = 0
ca_object_lots_breakout_find_by_type_in_submenu = 0
ca_object_representations_breakout_find_by_type_in_submenu = 0
ca_entities_breakout_find_by_type_in_submenu = 0
ca_places_breakout_find_by_type_in_submenu = 0
ca_occurrences_breakout_find_by_type_in_submenu = 0
ca_collections_breakout_find_by_type_in_submenu = 0
ca_loans_breakout_find_by_type_in_submenu = 0
ca_movements_breakout_find_by_type_in_submenu = 0
ca_sets_breakout_find_by_type_in_submenu = 1

Set the following to a non-zero value to put types directly into the find menu, replacing the top-level item class This
allows you do to type-specific searches and browses where the types are treated as generic top-level items

ca_objects_breakout_find_by_type_in_menu = 0
ca_object_lots_breakout_find_by_type_in_menu = 0
ca_object_representations_breakout_find_by_type_in_menu = 0
ca_entities_breakout_find_by_type_in_menu = 0
ca_places_breakout_find_by_type_in_menu = 0
ca_occurrences_breakout_find_by_type_in_menu = 1
ca_collections_breakout_find_by_type_in_menu = 0
ca_loans_breakout_find_by_type_in_menu = 0
ca_movements_breakout_find_by_type_in_menu = 0
ca_sets_breakout_find_by_type_in_menu = 0

Navigation options

If you only want to allow users to create new records with top-level types for a give item type, set the appropriate
directive below to 1; if set users will still be able to create records for sub-types, but only from within an existing
record with a top-level types This can be useful if you have a system where sub-types need to be subsidiary to top-
level records - eg. sub-type records need to have a top-level parent and cannot exist on their own

1.18. Configuring Providence 115

CollectiveAccess Documentation, Release 1.8

ca_objects_navigation_new_menu_shows_top_level_types_only = 0
ca_entities_navigation_new_menu_shows_top_level_types_only = 0
ca_places_navigation_new_menu_shows_top_level_types_only = 0
ca_occurrences_navigation_new_menu_shows_top_level_types_only = 0
ca_collections_navigation_new_menu_shows_top_level_types_only = 0
ca_object_lots_navigation_new_menu_shows_top_level_types_only = 0
ca_storage_locations_navigation_new_menu_shows_top_level_types_only = 0
ca_loans_navigation_new_menu_shows_top_level_types_only = 0
ca_movements_navigation_new_menu_shows_top_level_types_only = 0
ca_object_representations_navigation_new_menu_shows_top_level_types_only = 0

You can enumerate the types and sub-types shown in the new menu below.

ca_objects_navigation_new_menu_limit_types_to = []
ca_entities_navigation_new_menu_limit_types_to = []
ca_places_navigation_new_menu_limit_types_to = []
ca_occurrences_navigation_new_menu_limit_types_to = []
ca_collections_navigation_new_menu_limit_types_to = []
ca_object_lots_navigation_new_menu_limit_types_to = []
ca_storage_locations_navigation_new_menu_limit_types_to = []
ca_loans_navigation_new_menu_limit_types_to = []
ca_movements_navigation_new_menu_limit_types_to = []
ca_object_representations_navigation_new_menu_limit_types_to = []

Show/Hide Representations

Sometimes you want representations enabled for relationship purposes but don’t want to have the option to create or
edit them as free-standing records. You can control whether the object representations, when enabled in general above,
show up in the “new” and “find” menus using the directives below. Set them to a non-zero value to remove object
representations from the specified menu.

ca_object_representations_dont_show_in_new_menu = 0
ca_object_representations_dont_show_in_find_menu = 0

Show/Hide Tables

If you don’t want certain modules to show up in the “New” menu, you can disable them here. They will still be
searchable and can be created using QuickAdd or direct links (e.g. in the editor inspector of a related record, like an
Object created from a Lot)

ca_objects_dont_show_in_new_menu = 0
ca_entities_dont_show_in_new_menu = 0
ca_places_dont_show_in_new_menu = 0
ca_occurrences_dont_show_in_new_menu = 0
ca_collections_dont_show_in_new_menu = 0
ca_object_lots_dont_show_in_new_menu = 0
ca_storage_locations_dont_show_in_new_menu = 0
ca_loans_dont_show_in_new_menu = 0
ca_movements_dont_show_in_new_menu = 0

116 Chapter 1. Contents

CollectiveAccess Documentation, Release 1.8

Menu bar caching

Caching the menu bar can significantly increase performance If you are developing a profile. caching can prevent you
from seeing profile changes in real-time, however. So you can disable it here if need be. When using the system “in
production” it is usually best to leave this enabled

do_menu_bar_caching = 0

Disable

Turn off (or on) various features and database areas.

Editor “disable” switches

If you’re not using certain editors in your system (you don’t catalogue places for example) you can disable the menu
items for them by setting the various *_disable directives below to a non-zero value

ca_objects_disable = 0
ca_entities_disable = 0
ca_places_disable = 0
ca_occurrences_disable = 0
ca_collections_disable = 0
ca_object_lots_disable = 0
ca_storage_locations_disable = 0
ca_loans_disable = 0
ca_movements_disable = 1
ca_tours_disable = 1
ca_tour_stops_disable = 1
ca_object_representations_disable = 1

QuickAdd disable switches

ca_objects_disable_quickadd = 0
ca_entities_disable_quickadd = 0
ca_places_disable_quickadd = 0
ca_occurrences_disable_quickadd = 0
ca_collections_disable_quickadd = 0
ca_object_lots_disable_quickadd = 0
ca_storage_locations_disable_quickadd = 0
ca_loans_disable_quickadd = 0
ca_movements_disable_quickadd = 0

Disable “Add new <object> to lot”

(in the object lot editor inspector)

disable_add_object_to_lot_inspector_controls = 0

1.18. Configuring Providence 117

CollectiveAccess Documentation, Release 1.8

Show related counts in the inspector?

ca_objects_show_related_counts_in_inspector_for = []
ca_entities_show_related_counts_in_inspector_for = [ca_objects]
ca_places_show_related_counts_in_inspector_for = []
ca_occurrences_show_related_counts_in_inspector_for = [ca_objects]
ca_collections_show_related_counts_in_inspector_for = [ca_objects]
ca_storage_locations_show_related_counts_in_inspector_for = []
ca_loans_show_related_counts_in_inspector_for = []
ca_movements_show_related_counts_in_inspector_for = []
ca_tour_stops_show_related_counts_in_inspector_for = []

Show “add child record” control in editor inspector?

ca_objects_show_add_child_control_in_inspector = 0
ca_entities_show_add_child_control_in_inspector = 0
ca_places_show_add_child_control_in_inspector = 1
ca_occurrences_show_add_child_control_in_inspector = 0
ca_collections_show_add_child_control_in_inspector = 1
ca_storage_locations_show_add_child_control_in_inspector = 1
ca_loans_show_add_child_control_in_inspector = 0
ca_movements_show_add_child_control_in_inspector = 0
ca_tour_stops_show_add_child_control_in_inspector = 0

Set duplication disable

If you want to disable the ability to duplicate all items in a set across the board set this

ca_sets_disable_duplication_of_items = 0

Set type controls

enable_set_type_controls = 0

Hierarchies

Settings for hierarchical properties and display.

Strict type hierarchies

When fully enabled, top-level records may only be created with top-level types, and sub-records may only be created
with types that are direct sub-types of the parent’s type. This ensures conformance with the type hierarchy. So if you
have an object type hierarchy like this:

Book

Page

Figure Frontspiece

118 Chapter 1. Contents

CollectiveAccess Documentation, Release 1.8

. . . then top-level records can only be of type “Book.” Sub-records of books may only be “Page” or “Frontspiece”;
and sub-records of “Page” can be “Figure.” “Frontspiece” may not take sub-records.

We partially enabled, top-level records may only be created with top-level types, but sub-records may be of any type
below the top-level type, not just direct sub-types. In the example above, the sub-records of a “book” can be of type
“Page”, “Figure” or Frontspiece; sub-records of a “Page” may be only of type “Figure.”

When disabled, all types are allowed anywhere.

The type hierarchy behavior can be independently for each type of hierarchical record. Set to 1 to fully enable, 0 to
disable and ~ (tilde character) to partially enable restrictions.

ca_objects_enforce_strict_type_hierarchy = 0
ca_entities_enforce_strict_type_hierarchy = 0
ca_places_enforce_strict_type_hierarchy = 0
ca_occurrences_enforce_strict_type_hierarchy = 0
ca_collections_enforce_strict_type_hierarchy = 0
ca_storage_locations_enforce_strict_type_hierarchy = 0
ca_loans_enforce_strict_type_hierarchy = 0
ca_tour_stops_enforce_strict_type_hierarchy = 0
ca_list_items_enforce_strict_type_hierarchy = 0

Hierarchy browser items

ca_objects_hierarchy_browser_display_settings = ^ca_objects.preferred_labels.name (^
→˓ca_objects.idno)
ca_object_lots_hierarchy_browser_display_settings = ^ca_object_lots.preferred_labels
→˓(^ca_object_lots.idno_stub)
ca_entities_hierarchy_browser_display_settings = ^ca_entities.preferred_labels (^ca_
→˓entities.idno)
ca_places_hierarchy_browser_display_settings = ^ca_places.preferred_labels (^ca_
→˓places.idno)
ca_occurrences_hierarchy_browser_display_settings = ^ca_occurrences.preferred_labels
→˓(^ca_occurrences.idno)
ca_collections_hierarchy_browser_display_settings = ^ca_collections.preferred_labels
→˓(^ca_collections.idno)
ca_list_hierarchy_browser_display_settings = ^ca_lists.preferred_labels.name (^ca_
→˓lists.list_code)
ca_list_items_hierarchy_browser_display_settings = ^ca_list_items.preferred_labels.
→˓name_plural (^ca_list_items.idno)
ca_storage_locations_hierarchy_browser_display_settings = ^ca_storage_locations.
→˓preferred_labels (^ca_storage_locations.idno)
ca_tour_stops_hierarchy_browser_display_settings = ^ca_tour_stops.preferred_labels (^
→˓ca_tour_stops.idno)
ca_relationship_types_hierarchy_browser_display_settings = ^ca_relationship_types.
→˓preferred_labels (^ca_relationship_types.type_code)
ca_loans_hierarchy_browser_display_settings = ^ca_loans.preferred_labels (^ca_loans.
→˓idno)
ca_movements_hierarchy_browser_display_settings = ^ca_movements.preferred_labels (^ca_
→˓movements.idno)

ca_objects_hierarchy_browser_sort_values = [ca_objects.idno_sort]
ca_objects_hierarchy_browser_sort_direction = asc
ca_object_lots_hierarchy_browser_sort_values = [ca_object_lots.idno_stub_sort]
ca_object_lots_hierarchy_browser_sort_direction = asc
ca_entities_hierarchy_browser_sort_values = [ca_entities.preferred_labels.surname, ca_
→˓entities.preferred_labels.forename]

(continues on next page)

1.18. Configuring Providence 119

CollectiveAccess Documentation, Release 1.8

(continued from previous page)

ca_entities_hierarchy_browser_sort_direction = asc
ca_places_hierarchy_browser_sort_values = [ca_places.rank, ca_places.preferred_labels.
→˓name_sort]
ca_places_hierarchy_browser_sort_direction = asc
ca_occurrences_hierarchy_browser_sort_values = [ca_occurrences.preferred_labels.name_
→˓sort]
ca_occurrences_hierarchy_browser_sort_direction = asc
ca_collections_hierarchy_browser_sort_values = [ca_collections.rank, ca_collections.
→˓preferred_labels.name_sort]
ca_collections_hierarchy_browser_sort_direction = asc
ca_list_items_hierarchy_browser_sort_values = [ca_list_items.preferred_labels.name_
→˓sort_plural]
ca_list_items_hierarchy_browser_sort_direction = asc
ca_list_items_hierarchy_browser_disabled_items_mode = disabled
ca_storage_locations_hierarchy_browser_sort_values = [ca_storage_locations.rank, ca_
→˓storage_locations.preferred_labels.name_sort]
ca_storage_locations_hierarchy_browser_sort_direction = asc
ca_storage_locations_hierarchy_browser_disabled_items_mode = disabled
ca_tour_stops_hierarchy_browser_sort_values = [ca_tour_stops.preferred_labels.name_
→˓sort]
ca_tour_stops_hierarchy_browser_sort_direction = asc
ca_relationship_types_hierarchy_browser_sort_values = [ca_relationship_types.
→˓preferred_labels.typename]
ca_relationship_types_hierarchy_browser_sort_direction = asc
ca_loans_hierarchy_browser_sort_values = [ca_loans.preferred_labels.name_sort]
ca_loans_hierarchy_browser_sort_direction = asc
ca_movements_hierarchy_browser_sort_values = [ca_movements.preferred_labels.name_sort]
ca_movements_hierarchy_browser_sort_direction = asc

Collection hierarchies on the Summary screen

The summary screen includes a visual hierarchy by default for hierarchical collections. Use these directives to set the
sort value for the hierarchical display, as well as the display template used for format data. If nothing is set below the
system will default to the settings outlined in ca_collections_hierarchy_browser_sort_values.

ca_collections_hierarchy_summary_display_settings =
ca_collections_hierarchy_summary_sort_values =
ca_objects_hierarchy_summary_display_settings =
ca_collections_hierarchy_summary_show_full_object_hierarachy = 0

Show/Hide hierarchy root (Storage Locations & Places)

Hide hierarchy root for storage locations or places in New and Find screens Note that if you haven’t added any items
to the hierarchies yet, enabling this might prevent you from doing so (because you can’t select a parent).

ca_storage_locations_hierarchy_browser_hide_root = 0
ca_places_locations_hierarchy_browser_hide_root = 0

Show/Hide child records in search/browse results

Normally all results, regardless of their position in a hierarchy are displayed in search/browse results. Set this option
for alternative policies. Possible settings are:

120 Chapter 1. Contents

CollectiveAccess Documentation, Release 1.8

Set-
ting

Description Allowed values Re-
quired?

De-
fault

Syn-
onyms

<ta-
ble>_children_display_mode_in_results

Normally all results, regardless of
their position in a hierarchy are
displayed in search/browse results.
This option enables alternative poli-
cies, including permanent suppres-
sion and user-controlled filtering of
child record. This option can be used
with any primary table.

show = show all results by default; allow user
to filter children if they wish hide = hide all
child records (those that are not at the top of
their hierarchy) by default; allow user to re-
move filtering if desired alwaysShow = show
all results; do not allow filtering alwaysHide
= hide all child records; do not allow the user
to disable filtering

No al-
waysShow

“alwaysShow” is the default.

While this option may be set for any table, it is typically used only for objects.

ca_objects_children_display_mode_in_results = alwaysShow

Enable display of collections and objects as a single hierarchy

ca_objects_x_collections_hierarchy_enabled = 1
ca_objects_x_collections_hierarchy_relationship_type =
ca_objects_x_collections_hierarchy_disable_object_collection_idno_inheritance =

Titles + IDs

Set whether or not titles and identifiers are required and unique.

Require input id number value to conform to format? (0=no, 1=yes)

require_valid_id_number_for_ca_objects = 0
require_valid_id_number_for_ca_object_lots = 0
require_valid_id_number_for_ca_entities = 1
require_valid_id_number_for_ca_places = 1
require_valid_id_number_for_ca_collections = 1
require_valid_id_number_for_ca_occurrences = 1
require_valid_id_number_for_ca_loans = 0
require_valid_id_number_for_ca_movements = 0
require_valid_id_number_for_ca_tours = 0
require_valid_id_number_for_ca_tour_stops = 0
require_valid_id_number_for_ca_object_representations = 0
require_valid_id_number_for_ca_storage_locations = 0

Allow dupe id numbers? (0=no, 1=yes)

allow_duplicate_id_number_for_ca_objects = 1
allow_duplicate_id_number_for_ca_object_lots = 1
allow_duplicate_id_number_for_ca_entities = 1
allow_duplicate_id_number_for_ca_places = 1

(continues on next page)

1.18. Configuring Providence 121

CollectiveAccess Documentation, Release 1.8

(continued from previous page)

allow_duplicate_id_number_for_ca_collections= 1
allow_duplicate_id_number_for_ca_occurrences= 1
allow_duplicate_id_number_for_ca_list_items= 1
allow_duplicate_id_number_for_ca_loans= 0
allow_duplicate_id_number_for_ca_movements= 0
allow_duplicate_id_number_for_ca_tours= 0
allow_duplicate_id_number_for_ca_tour_stops= 0
allow_duplicate_id_number_for_ca_object_representations = 1
allow_duplicate_id_number_for_ca_storage_locations = 1

Allow dupe labels? (0=no, 1=yes)

If set to no, then atttempting to save records with a label already in use by another record will fail

allow_duplicate_labels_for_ca_objects = 1
allow_duplicate_labels_for_ca_object_lots = 1
allow_duplicate_labels_for_ca_entities = 0
allow_duplicate_labels_for_ca_places = 1
allow_duplicate_labels_for_ca_collections= 0
allow_duplicate_labels_for_ca_occurrences= 0
allow_duplicate_labels_for_ca_storage_locations= 1
allow_duplicate_labels_for_ca_list_items= 1
allow_duplicate_labels_for_ca_loans = 1
allow_duplicate_labels_for_ca_movements= 1
allow_duplicate_labels_for_ca_object_representations= 1
allow_duplicate_labels_for_ca_relationship_types= 1
allow_duplicate_labels_for_ca_set_items= 1
allow_duplicate_labels_for_ca_search_forms= 1
allow_duplicate_labels_for_ca_bundle_displays= 1
allow_duplicate_labels_for_ca_metadata_alert_rules = 1
allow_duplicate_labels_for_ca_editor_uis= 1
allow_duplicate_labels_for_ca_editor_ui_screens= 1
allow_duplicate_labels_for_ca_tours= 1
allow_duplicate_labels_for_ca_tour_stops= 1

Entity dupe name?

Set this to 1 if you want to display a warning when a new entity with a name that already exists (preferred or nonpre-
ferred) is about to be created

ca_entities_warn_when_preferred_label_exists = 0

Require preferred label? (0=no, 1=yes)

If set to yes, then attempting to save records without a preferred label will fail. If set to no (default) then attempting to
save a record without a preferred label will automatically set the preferred label to “[BLANK]”

require_preferred_label_for_ca_objects = 0
require_preferred_label_for_ca_object_lots = 0
require_preferred_label_for_ca_entities = 0
require_preferred_label_for_ca_places = 0

(continues on next page)

122 Chapter 1. Contents

CollectiveAccess Documentation, Release 1.8

(continued from previous page)

require_preferred_label_for_ca_collections = 0
require_preferred_label_for_ca_occurrences = 0
require_preferred_label_for_ca_storage_locations = 0
require_preferred_label_for_ca_list_items = 0
require_preferred_label_for_ca_loans = 0
require_preferred_label_for_ca_movements = 0
require_preferred_label_for_ca_object_representations = 0
require_preferred_label_for_ca_relationship_types = 0
require_preferred_label_for_ca_set_items = 0
require_preferred_label_for_ca_search_forms = 0
require_preferred_label_for_ca_bundle_displays = 0
require_preferred_label_for_ca_editor_uis = 0
require_preferred_label_for_ca_editor_ui_screens = 0
require_preferred_label_for_ca_tours = 0
require_preferred_label_for_ca_tour_stops = 0

Require preferred label value be present in a list

If set to a valid list code then any entered label value must match a preferred label for an item in that list.

preferred_label_for_ca_objects_must_be_in_list =
preferred_label_for_ca_object_lots_must_be_in_list =
preferred_label_for_ca_entities_must_be_in_list =
preferred_label_for_ca_places_must_be_in_list =
preferred_label_for_ca_collections_must_be_in_list =
preferred_label_for_ca_occurrences_must_be_in_list =
preferred_label_for_ca_storage_locations_must_be_in_list =
preferred_label_for_ca_list_items_must_be_in_list =
preferred_label_for_ca_loans_must_be_in_list =
preferred_label_for_ca_movements_must_be_in_list =
preferred_label_for_ca_object_representations_must_be_in_list =
preferred_label_for_ca_relationship_types_must_be_in_list =
preferred_label_for_ca_set_items_must_be_in_list =
preferred_label_for_ca_search_forms_must_be_in_list =
preferred_label_for_ca_bundle_displays_must_be_in_list =
preferred_label_for_ca_editor_uis_must_be_in_list =
preferred_label_for_ca_editor_ui_screens_must_be_in_list =
preferred_label_for_ca_tours_must_be_in_list =
preferred_label_for_ca_tour_stops_must_be_in_list =

Allow automated renumbering objects with lot idno + sequence number?

(when object number don’t conform to that format)

If you’re managing lots with related object-level records and the lot and object numbering get out of sync (because
you change the lot number after the fact, for example) then this can be useful. But it can also be dangerous in the
sense that letting cataloguers renumber sets of objects at a click may not be the idea. Only enable this if you need
it. Keep in mind that the automated renumbering format is fixed at lot <lot identifier> + <separator> + <sequential
number starting from one>. So if your lot number is 2010.10 and your separator is ‘.’, then objects will be numbered
2010.10.1, 2010.10.2, 2010.10.3, etc.

allow_automated_renumbering_of_objects_in_a_lot = 0

1.18. Configuring Providence 123

CollectiveAccess Documentation, Release 1.8

Label-less objects

If you don’t want to specify preferred labels for objects set this to a non-zero value This can be useful for collections
where individual items lack working names, such as in paleontology.

ca_objects_dont_use_labels = 0

Label-specific sort

Set to assume a specific language when generating sortable titles regardless of the locale set for the title. This can
be useful when content has been entered specific (or accurate) locale settings. The value can be a specific locale (Ex.
“en_US”) or a language code (Ex. “en”)

use_locale_for_sortable_titles =

Search

Search engine configuration

search_engine_plugin = SqlSearch

Browse Panel Styles

(for best results, choose a number between 1 and 5)

browse_row_size = 4

Quicksearch - order and results (“live” search in search box in header)

What sorts of results does Quicksearch return? List table names here to include them in the search, in the order they
should appear. This is only the default display configuration, which can be overriden by user preferences. Syntax is
ca_table/type, i.e ca_objects/video

quicksearch_default_results = [ca_objects, ca_entities, ca_places, ca_occurrences, ca_
→˓collections, ca_object_lots, ca_storage_locations, ca_loans, ca_movements, ca_tours,
→˓ ca_tour_stops]

Quicksearch - break out by type?

What table types are broken out in the result list? Syntax is list within square brackets, i.e [ca_objects, ca_entities]

quicksearch_breakout_by_type =

Restrict facets shown to specific facet groups?

124 Chapter 1. Contents

CollectiveAccess Documentation, Release 1.8

<table_name>_browse_facet_group limits facets on the main browse landing page
<table_name>_refine_facet_group limits facets in the "refine" browse on detail pages
<table_name>_search_refine_facet_group limits facets in the "refine" browse on search
→˓results

ca_objects_browse_facet_group = main
ca_objects_refine_facet_group = refine
ca_objects_search_refine_facet_group = refine

One table search

If set to a controller in the “find” module, will use that for quicksearch rather than the regular “Quicksearch” controller.
This is useful for having the Quicksearch operate on a single table

one_table_search =

Out of process search indexing

Switch to disable out of process search indexing

disable_out_of_process_search_indexing = 0

Hostname to use when triggering out of process indexing By default the site hostname configured in setup.php is used
but you can override it here if the hostname resolvable on the server differs from that used for incoming requests
out_of_process_search_indexing_hostname =

Caption formatting for search/browse “thumbnail” results

Set a display template here to customize display of captions under thumbnails in the thumbnail result view. The
template will be evaluated relative to each record in the result set.

ca_objects_results_thumbnail_caption_template = ^ca_objects.preferred_labels.name
→˓%truncate=27&ellipsis=1
<l>^ca_objects.idno</l>
ca_occurrences_results_thumbnail_caption_template = ^ca_occurrences.preferred_labels.
→˓name%truncate=27&ellipsis=1
<l>^ca_occurrences.idno</l>
ca_entities_results_thumbnail_caption_template = ^ca_entities.preferred_labels.name
→˓%truncate=27&ellipsis=1
<l>^ca_entities.idno</l>
ca_collections_results_thumbnail_caption_template = ^ca_collections.preferred_labels.
→˓name%truncate=27&ellipsis=1
<l>^ca_collections.idno</l>

Features

Settings related to various features such as: location tracking, deaccessioning, WorldCat, check in/check out and more.

Location tracking options

Direct object-location reference storage location tracking (also set this for movement-based storage location tracking)

1.18. Configuring Providence 125

CollectiveAccess Documentation, Release 1.8

object_storage_location_tracking_relationship_type =

Movement-based storage location tracking

movement_storage_location_tracking_relationship_type =
movement_object_tracking_relationship_type =
record_movement_information_when_moving_storage_location = 0
movement_storage_location_date_element =

Deaccession options

deaccession_force_access_private = 1
deaccession_dont_allow_editing = 0
deaccession_use_disposal_date = 1

Library-style check-out of objects

enable_library_services = 0
enable_object_checkout = 0

User generated content

enable_user_generated_content = 1

ResourceSpace import

The ResourceSpace data importer allows records and media to be imported from a ResourceSpace Installation The
importer connects using a username and API Key that is unique to that user and can be found in the edit user page
under the Admin > Manage Users tab in ResourceSapce

Also required is the base URL for your ResourceSpace installation which all API calls are based on This should be
your root url + /api/

resourcespace_apis = {
EXAMPLE_CARE_SYSTEM = {

resourcespace_label = ,
resourcespace_base_api_url = ,
resourcespace_user =

}
}

WorldCat import

The data importer can access OCLC WorldCat via either their web service API or Z39.50 service. Using the web
service API requires that PHP be installed with libCURL support. Using Z39.50 requires that PHP be built with libyaz

126 Chapter 1. Contents

CollectiveAccess Documentation, Release 1.8

support (http://www.indexdata.com/yaz). Many PHP installations have libCURL installed by default; most do not
have libyaz installed.

The importer will connect ia Z39.50 if a username and password are configured below and libyaz is available, otherwise
the web service API will be used as a fallback, assuming a valid API key is configured below and libCURL is available.

worldcat_api_key = MY_WORLDCAT_API_KEY
worldcat_z39.50_user =
worldcat_z39.50_password =

Optionally mark WorldCat items already present in system using ISBN To enable set “worlcat_isbn_element_code”
to the ca_objects metadata element code containing the ISBN code for the book. worlcat_isbn_element_code =

Display template used to format “ISBN present” message. Evaluated relative to the existing object. You can use
standard display template codes (eg. ^ca_objects.idno) to display details about the match.

worlcat_isbn_exists_template = <l><i class=
→˓"fa fa-external-link" aria-hidden="true"></i></l>

Template formatting the “key” displayed below WorldCat query results. Use this to define any icons used in the
“worlcat_isbn_exists_template”

worlcat_isbn_exists_key = <div class="caWorldCatExistingObjectKey"><i class="fa fa-
→˓external-link" aria-hidden="true"></i> = Previously imported</div>

Taxonomy web services

To access the uBio taxonomic name service (http://www.ubio.org) via a ‘Taxonomy’ attribute you must enter your
uBio API keycode here If you don’t care about taxonomy (or even know what is it) then leave this as-is

ubio_keycode = enter_your_keycode_here

Flickr API

flickr_api_key =

“Rich text” (aka. wysiwyg) editor options

You can read more about available text editor options here: http://docs.cksource.com/CKEditor_4.x/Developers_
Guide/Toolbar

Defines options available in the toolbar

wysiwyg_editor_toolbar = {
formatting = [Bold, Italic, Underline, Strike, -, Subscript, Superscript, Font,

→˓FontSize, TextColor],
lists = [-, NumberedList, BulletedList, Outdent, Indent, Blockquote],
links = [Link, Unlink, Anchor],
misc = [SelectAll, Undo, Redo, -, Source, Maximize, Image, CALink]

}

Defines options available in the toolbar

1.18. Configuring Providence 127

http://www.indexdata.com/yaz
http://www.ubio.org
http://docs.cksource.com/CKEditor_4.x/Developers_Guide/Toolbar
http://docs.cksource.com/CKEditor_4.x/Developers_Guide/Toolbar

CollectiveAccess Documentation, Release 1.8

wysiwyg_content_editor_toolbar = {
formatting = [Bold, Italic, Underline, Strike, -, Subscript, Superscript, Font,

→˓FontSize, TextColor],
lists = [-, NumberedList, BulletedList, Outdent, Indent, Blockquote],
links = [Link, Unlink, Anchor],
misc = [SelectAll, Undo, Redo, -, Source, Maximize, Media, CALink]

}

Enable dependent field visibility feature

See here for more information: http://docs.collectiveaccess.org/wiki/Dependent_Field_Visibility

enable_dependent_field_visibility = 0

Global template values (Pawtucket content management)

Globals are text values that may be set in the Pawtucket web UI and substituted into any view template, including
headers and footers. Values defined here will be editable in the “Global Values Editor” (available to users with the
can_edit_theme_global_values priv) and usable in templates under their name (Eg. {{{operating_hours}}} in the
example below).

Options controlling how the editor displays the value may be set for each global. Width and height control the size of
the element; usewysiwygeditor enables a “wysiwyg” rich text editor for formatted text.

global_template_values = {
hours_of_operation = {

name = Hours of operation,
description = List current operating hours here,
width = 600px,
height = 150px,
usewysiwygeditor = 0

}
}

Site page templates (Pawtucket content management)

Allow PHP code in content-managed site pages

By default only value tags in the form {{{tag-name}}} are allowed in Pawtucket site page templates. If you need the
flexibility and power afforded by direct embedding of PHP code in your templates set this option to a non-zero value.
Note that enabling this option will allow execution of ANY code embedded in the template on EVERY page load.
Depending upon your point of view this is either a feature or a security hole. It doesn’t have to be a problem, but keep
it in mind. . .

Note that this setting only affects page previews in Providence. To allow PHP code execution in Pawtucket you must
also set this option in your theme.

allow_php_in_site_page_templates = 0

128 Chapter 1. Contents

http://docs.collectiveaccess.org/wiki/Dependent_Field_Visibility

CollectiveAccess Documentation, Release 1.8

Access Control

Structural mechanisms that control who can see what, and how (optional).

Bundle-level access control

default_bundle_access_level = __CA_BUNDLE_ACCESS_EDIT__

Type-level access control

perform_type_access_checking = 0
default_type_access_level = __CA_BUNDLE_ACCESS_EDIT__

Source-level access control

perform_source_access_checking = 0
default_source_access_level = __CA_BUNDLE_ACCESS_EDIT__

Item-level access control

perform_item_level_access_checking = 0
default_item_access_level = __CA_ACL_EDIT_DELETE_ACCESS__

You can control item-level access control support for each type of item using these directives

ca_objects_dont_do_item_level_access_control = 0
ca_object_lots_dont_do_item_level_access_control = 0
ca_entities_dont_do_item_level_access_control = 0
ca_places_dont_do_item_level_access_control = 0
ca_occurrences_dont_do_item_level_access_control = 0
ca_collections_dont_do_item_level_access_control = 0
ca_lists_dont_do_item_level_access_control = 0
ca_list_items_dont_do_item_level_access_control = 0
ca_loans_dont_do_item_level_access_control = 0
ca_movements_dont_do_item_level_access_control = 0
ca_object_representations_dont_do_item_level_access_control = 0
ca_representation_annotations_dont_do_item_level_access_control = 0
ca_storage_locations_dont_do_item_level_access_control = 0
ca_tours_dont_do_item_level_access_control = 0
ca_tour_stops_dont_do_item_level_access_control = 0

Defaults for collection-to-object ACL inheritance settings Set to 1 to make default to inherit; 0 for default to be no
inheritance

ca_collections_acl_inherit_from_parent_default = 0
ca_objects_acl_inherit_from_ca_collections_default = 0
ca_objects_acl_inherit_from_parent_default = 0

1.18. Configuring Providence 129

CollectiveAccess Documentation, Release 1.8

Administrator

User_id to consider “administrator” - not subject to access control measures. By default, user_id=1 is considered
administrator for convenience and compatbility with older installations. You can make any user_id “administrator” if
you want, however, if disable this completely by setting it to a blank value.

administrator_user_id = 1

email user when account is activated in Manage > Access control?

email_user_when_account_activated = 0

Set Access

If you want all users to see all sets regardless of ownership or access control set this to one (Yes, some people apparently
want to do this)

ca_sets_all_users_see_all_sets = 0

“Access” inheritance

Allows child records to receive the “access” field value of their immediate parent. This can be useful when you
generally want child record access to mirror that of the parent, but with occasional cataloguer-defined exceptions

Currently only supported for ca_objects

ca_objects_allow_access_inheritance = 0

Default inheritance status for newly created ca_objects records

ca_objects_access_inheritance_default = 1

Styling

Controls for visual elements such as logos, colors, etc. within the application and exported reports and labels

Theme configuration

To display your logo in the menu bar, upload it to the graphics/logos/ folder in the Default theme directory and enter
the filename below. For the best results, your logo must not exceed 45 pixels in height. To change the menu color,
enter the six digit HTML color code below and omit the leading ‘’ sign.

header_img = menu_logo.png
menu_color = ffffff
footer_color = ffffff
login_logo = ca_logo.png

130 Chapter 1. Contents

CollectiveAccess Documentation, Release 1.8

Search Result Reporting configuration

To display your logo at the top of a PDF report, upload it to the graphics/logos/ folder in all themes directory and enter
the filename below. To change the header color (report_color) and header text color (report_text_color), enter the six
digit HTML color code below and omit the leading ‘’ sign.

report_header_enabled = 1
report_img = menu_logo.png
report_color = FFFFFF
report_text_color = 000000

The following options control what additional information can be printed on your PDF reports. Enter a non-zero value
to include the following information.

report_show_timestamp = 1
report_show_number_results = 1
report_representation_version = preview
report_show_search_term = 1

Record PDF Summary configuration

To display your logo at the top of a PDF report, upload it to the graphics/logos/ folder in all themes directory and enter
the filename below. To change the header color (summary_color) and header text color (summary_text_color), enter
the six digit HTML color code below and omit the leading ‘’ sign.

summary_header_enabled = 1
summary_page_numbers = 1
summary_footer_enabled = 1
summary_img = ca_wide.png
summary_color = FFFFFF
summary_text_color = 000000
summary_footer_color = FFFFFF
summary_footer_text_color = 000000

The following options control what additional information can be printed on your PDF summary. Enter a non-zero
value to include the following information.

summary_show_identifier = 1
summary_show_timestamp = 1

/* Image path for icon to display when no image is available in thumbnail view */ /* Image must be uploaded to
graphics/buttons in your theme folder */

no_image_icon = glyphicons_138_picture.png

Print labels (ie. stickers)

As of CollectiveAccess version 1.5 a new label generator is available that is easier to configure and customize. The
new generator uses HTML/CSS to specify the layout of label formats, unlike the old system which uses a set of
complex configuration files. Any existing label formats you wish to use with the new generator must be completely
reimplemented. There is no automated conversion process.

1.18. Configuring Providence 131

CollectiveAccess Documentation, Release 1.8

Set this if you want a dashed border around all printed labels
add_print_label_borders = 0

Annotation options

element code of ca_representation_annotation list metadata element that should be used to classify and color code
annotations

annotation_class_element =

Additional theme

theme to use when user is not logged in (when they’re logged in their preferred theme is used)

theme = default
themes_directory = <ca_base_dir>/themes
themes_url = <ca_url_root>/themes
views_directory = <themes_directory>/<theme>/views

Mapping

Settings for GeoNames and Mapping plugins (Google Maps/Open Layers)

GeoNames web services

To access the GeoNames services for geographic names via a ‘GeoNames’ attribute you must enter your GeoNames
username and password here. You can get a free account at http://www.geonames.org/login. After you confirmed
your registration you have to enable your account for web service usage at http://www.geonames.org/manageaccount,
otherwise the search won’t return any results. If you don’t care about GeoNames (or even know what is it) then leave
this as-is

geonames_user = enter_your_username_here

The api.geonames.org URL should not be changed if you’re using the free GeoNames web service. The free offering
should be sufficient for most users. If you have a paid/premium account, geonames provides you with a list of addi-
tional hostnames available for use over https here: http://www.geonames.org/account Enter one of those hostnames to
make use of your premium subscription

geonames_api_base_url = http://api.geonames.org

Mapping plugins

Name of plugin class to use for mapping Currently supported values: OpenLayers, Leaflet

OpenLayers is deprecated. Use Leaflet unless you have a reason to do otherwise. mapping_plugin = Leaflet

Leaflet options Show zoom in/out control leaflet_maps_show_scale_controls = 1

Path color for polygons and circles leaflet_maps_path_color = "0000cc"

132 Chapter 1. Contents

http://www.geonames.org/login
http://www.geonames.org/manageaccount
http://www.geonames.org/account

CollectiveAccess Documentation, Release 1.8

Path weight (in pixels) for polygons and circles leaflet_maps_path_weight = 2

Path opacity for polygons and circles (0 is transparent, 1 is opaque) leaflet_maps_path_opacity = 0.6

Fill color for polygons and circles leaflet_maps_fill_color = "ff0000"

Fill opacity for polygons and circles (0 is transparent, 1 is opaque) leaflet_maps_fill_opacity = 0.1

URL for base layer when using Leaflet mapping plugin See https://leaflet-extras.github.io/leaflet-providers/preview/
for previews of various base maps

leaflet_base_layer = https://maps.wikimedia.org/osm-intl/{z}/{x}/{y}{r}.png

OpenLayers options Tile to use for base layer; Ex. OpenLayers.Layer.OSM() [OpenStreetMaps] or OpenLay-
ers.Layer.Stamen(‘toner’) [Stamen ‘Toner’ theme]

openlayers_base_layer = OpenLayers.Layer.OSM()

Radius, in pixels, of plotted points

openlayers_point_radius = 5

Fill color (hex) for points and regions

openlayers_fill_color = ffcc66

Stroke width, in pixels, for points, regions and paths

openlayers_stroke_width = 2

Stroke color (hex) for points, regions and paths

openlayers_stroke_color = ff9933

Fill color (hex) for points and regions when selected

openlayers_fill_color_selected = 66ccff

Stroke color (hex) for points regions and paths when selected

openlayers_stroke_color_selected = 3399ff

Generic mapping options Attribute object records to use to map search results

ca_objects_map_attribute = georeference

Defaults

System defaults to control layouts, displays, templates and more.

Related item lookup settings

ca_objects_lookup_settings = [<unit relativeTo='ca_objects'>^ca_object_
→˓representations.media.icon (^ca_objects.idno) ^ca_objects.preferred_labels</unit>]
ca_objects_lookup_delimiter =
ca_objects_lookup_relationship_type_position = right
ca_objects_lookup_sort = _natural;ca_objects.idno_sort
ca_objects_lookup_relationship_type_editable = 0

ca_object_lots_lookup_settings = [^ca_object_lots.preferred_labels (^ca_object_lots.
→˓idno_stub)]
ca_object_lots_lookup_delimiter =

(continues on next page)

1.18. Configuring Providence 133

https://leaflet-extras.github.io/leaflet-providers/preview/

CollectiveAccess Documentation, Release 1.8

(continued from previous page)

ca_object_lots_lookup_relationship_type_position = right
ca_object_lots_lookup_sort = _natural;ca_object_lots.idno_stub_sort
ca_object_lots_lookup_relationship_type_editable = 0

ca_entities_lookup_settings = [^ca_entities.preferred_labels]
ca_entities_lookup_delimiter =
ca_entities_lookup_relationship_type_position = right
ca_entities_lookup_sort = _natural;ca_entity_labels.name_sort
ca_entities_lookup_relationship_type_editable = 0

ca_places_lookup_settings = [^ca_places.hierarchy.preferred_labels.name
→˓%maxLevelsFromBottom=4]
ca_places_lookup_delimiter =
ca_places_lookup_relationship_type_position = right
ca_places_lookup_sort = _natural;ca_places.idno_sort
ca_places_lookup_relationship_type_editable = 0

ca_occurrences_lookup_settings = [^ca_occurrences.preferred_labels]
ca_occurrences_lookup_delimiter =
ca_occurrences_lookup_relationship_type_position = right
ca_occurrences_lookup_sort = _natural;ca_occurrences.idno_sort
ca_occurrences_lookup_relationship_type_editable = 0

ca_collections_lookup_settings = [^ca_collections.preferred_labels (^ca_collections.
→˓idno)]
ca_collections_lookup_delimiter =
ca_collections_lookup_relationship_type_position = right
ca_collections_lookup_sort = _natural;ca_collections.idno_sort
ca_collections_lookup_relationship_type_editable = 0

ca_storage_locations_lookup_settings = [^ca_storage_locations.hierarchy.preferred_
→˓labels.name]
ca_storage_locations_lookup_delimiter =
ca_storage_locations_lookup_relationship_type_position = right
ca_storage_locations_lookup_sort = _natural;ca_storage_locations.idno_sort
ca_storage_locations_lookup_relationship_type_editable = 0

ca_list_items_lookup_settings = [^ca_list_items.hierarchy.preferred_labels.name_
→˓plural]
ca_list_items_lookup_delimiter =
ca_list_items_lookup_relationship_type_position = right
ca_list_items_lookup_sort = _natural;ca_list_items.idno_sort
ca_list_items_lookup_relationship_type_editable = 0

ca_relationship_types_lookup_settings = [^ca_relationship_types.parent.preferred_
→˓labels ^ca_relationship_types.preferred_labels (^ca_relationship_types.type_code)]
ca_relationship_types_lookup_delimiter =
ca_relationship_types_lookup_sort = _natural;ca_relationship_types.type_code

ca_loans_lookup_settings = [^ca_loans.preferred_labels]
ca_loans_lookup_delimiter =
ca_loans_lookup_relationship_type_position = right
ca_loans_lookup_sort = _natural;ca_loans.idno_sort
ca_loans_lookup_relationship_type_editable = 0

ca_movements_lookup_settings = [^ca_movements.preferred_labels]
ca_movements_lookup_delimiter =

(continues on next page)

134 Chapter 1. Contents

CollectiveAccess Documentation, Release 1.8

(continued from previous page)

ca_movements_lookup_relationship_type_position = right
ca_movements_lookup_sort = _natural;ca_movements.idno_sort
ca_movements_lookup_relationship_type_editable = 0

ca_users_lookup_settings = [^ca_users.fname ^ca_users.lname (^ca_users.email)]
ca_users_lookup_delimiter =
ca_users_lookup_sort = _natural;ca_users.user_name

ca_user_groups_lookup_settings= [^ca_user_groups.name]
ca_user_groups_lookup_delimiter =
ca_user_groups_lookup_sort = _natural;ca_user_groups.code

ca_tours_lookup_settings = [^ca_tours.preferred_labels]
ca_tours_lookup_delimiter =
ca_tours_lookup_sort = _natural;ca_tours.tour_code

ca_tour_stops_lookup_settings = [^ca_tour_stops.preferred_labels]
ca_tour_stops_lookup_delimiter =
ca_tour_stops_lookup_sort = _natural;ca_tour_stops.idno_sort
ca_tour_stops_lookup_relationship_type_editable = 0

ca_object_representations_lookup_settings = [^ca_object_representations.media.icon ^
→˓ca_object_representations.preferred_labels]
ca_object_representations_lookup_delimiter =
ca_object_representations_lookup_sort = _natural;ca_object_representations.idno_sort
ca_object_representations_lookup_relationship_type_editable = 0

ca_representation_annotations_lookup_settings = [^ca_representation_annotations.
→˓preferred_labels.name]
ca_representation_annotations_lookup_delimiter =
ca_representation_annotations_lookup_sort = _natural

ca_sets_lookup_settings = [^ca_sets.preferred_labels.name (^ca_sets.set_code)]
ca_sets_lookup_delimiter =
ca_sets_lookup_sort = _natural

ca_object_checkouts_lookup_settings = [^ca_objects.preferred_labels.name (^ca_objects.
→˓idno) <i>Borrowed on ^ca_object_checkouts.checkout_date%timeOmit=1 by ^ca_users.
→˓fname ^ca_users.lname</i>]
ca_object_checkouts_lookup_delimiter =

Default bundle display templates for related bundles (Eg. ca_entities, ca_occurrences, etc.)

ca_objects_default_bundle_display_template = <unit relativeTo="ca_objects"><l>^ca_
→˓objects.preferred_labels.name</l> (^relationship_typename)</unit>
ca_entities_default_bundle_display_template = <unit relativeTo="ca_entities"><l>^ca_
→˓entities.preferred_labels.displayname</l> (^relationship_typename)</unit>
ca_places_default_bundle_display_template = <unit relativeTo="ca_places"><l>^ca_
→˓places.preferred_labels.name</l> (^relationship_typename)</unit>
ca_occurrences_default_bundle_display_template = <unit relativeTo="ca_occurrences"><l>
→˓^ca_occurrences.preferred_labels.name</l> (^relationship_typename)</unit>
ca_object_lots_default_bundle_display_template = <unit relativeTo="ca_object_lots"><l>
→˓^ca_object_lots.preferred_labels.name</l> (^ca_object_lots.idno_stub)</unit>
ca_storage_locations_default_bundle_display_template = <unit relativeTo="ca_storage_
→˓locations"><l>^ca_storage_locations.preferred_labels.name</l> (^relationship_
→˓typename)</unit> (continues on next page)

1.18. Configuring Providence 135

CollectiveAccess Documentation, Release 1.8

(continued from previous page)

ca_loans_default_bundle_display_template = <unit relativeTo="ca_loans"><l>^ca_loans.
→˓preferred_labels.name</l> (^relationship_typename)</unit>
ca_movements_default_bundle_display_template = <unit relativeTo="ca_movements"><l>^ca_
→˓movements.preferred_labels.name</l> (^relationship_typename)</unit>
ca_object_representations_default_bundle_display_template = <unit relativeTo="ca_
→˓object_representations" delimiter="
"><l>^ca_object_representations.media.
→˓thumbnail</l>
<l>^ca_object_representations.preferred_labels.name</l> (^
→˓relationship_typename)</unit>
ca_list_items_default_bundle_display_template = <unit relativeTo="ca_list_items"><l>^
→˓ca_list_items.preferred_labels.name_plural</l> (^relationship_typename)</unit>

Default template for media viewer caption

media_overlay_titlebar_template = "^ca_objects.preferred_labels.name <ifdef code='ca_
→˓objects.idno'>(^ca_objects.idno)</ifdef>"

Label type lists

Labels, both preferred and non-preferred, for primary items (objects, entities, etc.) can include a type. By de-
fault the range of types is defined by a list named for the item. For objects, the types for preferred labels are ob-
ject_label_types_preferred while the non-preferred label types are defined by the object_label_types list. You can set
other lists for each kind of label below. If you don’t want to use types for a given category of label set it to an empty
list.

ca_objects_preferred_label_type_list = object_label_types_preferred
ca_objects_nonpreferred_label_type_list = object_label_types
ca_object_lots_preferred_label_type_list = object_lot_label_types_preferred
ca_object_lots_nonpreferred_label_type_list = object_lot_label_types
ca_entities_preferred_label_type_list = entity_label_types_preferred
ca_entities_nonpreferred_label_type_list = entity_label_types
ca_places_preferred_label_type_list = place_label_types_preferred
ca_places_nonpreferred_label_type_list = place_label_types
ca_collections_preferred_label_type_list = collection_label_types_preferred
ca_collections_nonpreferred_label_type_list = collection_label_types
ca_occurrences_preferred_label_type_list = occurrence_label_types_preferred
ca_occurrences_nonpreferred_label_type_list = occurrence_label_types
ca_loans_preferred_label_type_list = loan_label_types_preferred
ca_loans_nonpreferred_label_type_list = loan_label_types
ca_movements_preferred_label_type_list = movement_label_types_preferred
ca_movements_nonpreferred_label_type_list = movement_label_types
ca_storage_locations_preferred_label_type_list = storage_location_label_types_
→˓preferred
ca_storage_locations_nonpreferred_label_type_list = storage_location_label_types
ca_list_items_preferred_label_type_list = list_item_label_types_preferred
ca_list_items_nonpreferred_label_type_list = list_item_label_types
ca_object_representations_preferred_label_type_list = object_representation_label_
→˓types_preferred
ca_object_representations_nonpreferred_label_type_list = object_representation_label_
→˓types
ca_representation_annotation_preferred_label_type_list = representation_annotation_
→˓label_types_preferred
ca_representation_annotation_nonpreferred_label_type_list = representation_annotation_
→˓label_types

136 Chapter 1. Contents

CollectiveAccess Documentation, Release 1.8

Default to summary when opening item for editing?

ca_objects_editor_defaults_to_summary_view = 0
ca_object_lots_editor_defaults_to_summary_view = 0
ca_entities_editor_defaults_to_summary_view = 0
ca_places_editor_defaults_to_summary_view = 0
ca_occurrences_editor_defaults_to_summary_view = 0
ca_collections_editor_defaults_to_summary_view = 0
ca_lists_editor_defaults_to_summary_view = 0
ca_list_items_editor_defaults_to_summary_view = 0
ca_loans_editor_defaults_to_summary_view = 0
ca_movements_editor_defaults_to_summary_view = 0
ca_storage_locations_editor_defaults_to_summary_view = 0
ca_object_representations_editor_defaults_to_summary_view = 0
ca_tours_editor_defaults_to_summary_view = 0
ca_tour_stops_editor_defaults_to_summary_view = 0
ca_representation_annotations_defaults_to_summary_view = 0

Find defaults

items_per_page_options_for_ca_objects_search = [12,24,36,48]
items_per_page_default_for_ca_objects_search = 24
view_default_for_ca_objects_search = list

items_per_page_options_for_ca_object_lots_search = [15,30,45]
items_per_page_default_for_ca_object_lots_search = 30
view_default_for_ca_object_lots_search = list
enable_full_thumbnail_result_views_for_ca_object_lots_search = 0

items_per_page_options_for_ca_entities_search = [15,30,45]
items_per_page_default_for_ca_entities_search = 30
view_default_for_ca_entities_search = list
enable_full_thumbnail_result_views_for_ca_entities_search = 0

items_per_page_options_for_ca_places_search = [15,30,45]
items_per_page_default_for_ca_places_search = 30
view_default_for_ca_places_search = list

items_per_page_options_for_ca_occurrences_search = [15,30,45]
items_per_page_default_for_ca_occurrences_search = 30
view_default_for_ca_occurrences_search = list
enable_full_thumbnail_result_views_for_ca_occurrences_search = 0

items_per_page_options_for_ca_collections_search = [15,30,45]
items_per_page_default_for_ca_collections_search = 30
view_default_for_ca_collections_search = list
enable_full_thumbnail_result_views_for_ca_collections_search = 0

items_per_page_options_for_ca_storage_locations_search = [15,30,45]
items_per_page_default_for_ca_storage_locations_search = 30
view_default_for_ca_storage_locations_search = list

items_per_page_options_for_ca_objects_browse = [12,24,36,48]
items_per_page_default_for_ca_objects_browse = 24
view_default_for_ca_objects_browse = list

(continues on next page)

1.18. Configuring Providence 137

CollectiveAccess Documentation, Release 1.8

(continued from previous page)

items_per_page_options_for_ca_object_lots_browse = [15,30,45]
items_per_page_default_for_ca_object_lots_browse = 30
view_default_for_ca_object_lots_browse = list
enable_full_thumbnail_result_views_for_ca_object_lots_browse = 0

items_per_page_options_for_ca_entities_browse = [15,30,45]
items_per_page_default_for_ca_entities_browse = 30
view_default_for_ca_entities_browse = list
enable_full_thumbnail_result_views_for_ca_entities_browse = 0

items_per_page_options_for_ca_places_browse = [15,30,45]
items_per_page_default_for_ca_places_browse = 30
view_default_for_ca_places_browse = list

items_per_page_options_for_ca_occurrences_browse = [15,30,45]
items_per_page_default_for_ca_occurrences_browse = 30
view_default_for_ca_occurrences_browse = list
enable_full_thumbnail_result_views_for_ca_occurrences_browse = 0

items_per_page_options_for_ca_collections_browse = [15,30,45]
items_per_page_default_for_ca_collections_browse = 30
view_default_for_ca_collections_browse = list
enable_full_thumbnail_result_views_for_ca_collections_browse = 0

items_per_page_options_for_ca_storage_locations_browse = [15,30,45]
items_per_page_default_for_ca_storage_locations_browse = 30
view_default_for_ca_storage_locations_browse = list

items_per_page_options_for_ca_loans_browse = [15,30,45]
items_per_page_default_for_ca_loans_browse = 30
view_default_for_ca_loans_browse = list

items_per_page_options_for_ca_movements_browse = [15,30,45]
items_per_page_default_for_ca_movements_browse = 30
view_default_for_ca_movements_browse = list

items_per_page_options_for_ca_lists_browse = [15,30,45]
items_per_page_default_for_ca_lists_browse = 30
view_default_for_ca_lists_browse = list

items_per_page_options_for_ca_list_items_browse = [15,30,45]
items_per_page_default_for_ca_list_items_browse = 30
view_default_for_ca_list_items_browse = list

items_per_page_options_for_ca_tours_browse = [15,30,45]
items_per_page_default_for_ca_tours_browse = 30
view_default_for_ca_tours_browse = list

items_per_page_options_for_ca_tour_stops_browse = [15,30,45]
items_per_page_default_for_ca_tour_stops_browse = 30
view_default_for_ca_tour_stops_browse = list

items_per_page_options_for_ca_object_representations_browse = [15,30,45]
items_per_page_default_for_ca_object_representations_browse = 30
view_default_for_ca_object_representations_browse = list

138 Chapter 1. Contents

CollectiveAccess Documentation, Release 1.8

Set item display templates

Used to format records in set item lists when no specific formatting has been specified

ca_objects_set_item_display_template = ^ca_objects.preferred_labels.name (^ca_objects.
→˓idno)
ca_object_lots_set_item_display_template = ^ca_object_lots.preferred_labels.name (^ca_
→˓object_lots.idno_stub)
ca_entities_set_item_display_template = ^ca_entities.preferred_labels.displayname
ca_places_set_item_display_template = ^ca_places.preferred_labels.name
ca_occurrences_set_item_display_template = ^ca_occurrences.preferred_labels.name
ca_collections_set_item_display_template = ^ca_collections.preferred_labels.name
ca_loans_set_item_display_template = ^ca_loans.preferred_labels.name
ca_movements_set_item_display_template = ^ca_movements.preferred_labels.name
ca_storage_locations_set_item_display_template = ^ca_storage_locations.preferred_
→˓labels.name
ca_object_representations_set_item_display_template = ^ca_object_representations.
→˓preferred_labels.name
ca_list_items_set_item_display_template = ^ca_list_itmes.preferred_labels.name_plural
→˓(^ca_list_items.idno)
ca_tours_set_item_display_template = ^ca_tours.preferred_labels.name
ca_tour_stops_set_item_display_template = ^ca_tour_stops.preferred_labels.name

enable this to always show a default bundle preview for attribute bundles, even if the display template for that particular
element isn’t set

always_show_bundle_preview_for_attributes = 0

Default type to use when creating sets

(in search results “sets” options, for example)

ca_sets_default_type = user

Timecode output

Controls how timecode values are displayed Valid settings are:

• COLON_DELIMITED = format with colons. Ex. 1:20:10

• HOURS_MINUTES_SECONDS = format with h/m/s labels. Ex. 1h 20m 10s

• RAW = the number of seconds in the interval. Ex. 4810

timecode_output_format = COLON_DELIMITED

Currency settings

By default currency values using the “$” symbol are considered to be in US dollars. You can change that here to
another currency using its standard 3-letter code. Ex. CDN = Canadian dollars

default_dollar_currency = USD

1.18. Configuring Providence 139

CollectiveAccess Documentation, Release 1.8

Length settings

Use Unicode fraction glyphs such as (ex. ¼) in place of the text equivalent (ex. 1/4)

As of version 1.7.6 these settings are DEPRECATED. In a future version these settings will be removed. Use the
settings in the dimensions.conf configuration file if possible.

use_unicode_fractions_for_measurements = 1
force_use_of_fractions_for_measurements = 0

Record duplication

By default duplicated records have the word “duplicate” appended to their preferred label. You can disable this
behavior by setting this option.

dont_mark_duplicated_records_in_preferred_label = 0

Log options

By default a timestamp is shown for every change in the record-based change log. Enable this to limit the display to
the date of the change.

dont_show_timestamp_in_change_log = 0

When deleting an item it is possible to move any references to or from that item to another. Alterna-
tively references can be deleted with the item. The system-wide default behavior may be set here and will
be used when the user has not set a preference. Valid options are “remove” or “transfer” Note that you
can set per-table defaults by prefacing “delete_reference_handling_default” with a table name. (For example,
“ca_objects_delete_reference_handling_default”)

delete_reference_handling_default = remove

Components

ca_objects_container_types = []
ca_objects_component_types = []
ca_objects_component_display_settings = <l>^ca_objects.preferred_labels.name</l> (^ca_
→˓objects.idno)

Media

Media processing tweaks

If you have the PECL Imagick extension installed on your server and don’t want to use it with CollectiveAccess (it has
a bad habit of choking and crashing on some types of files) you can force CA to ignore it by setting ‘dont_use_imagick’
to 1; leave it set to zero if you want to use Imagick. When Imagick works, it performs well so you should give it a try
and see how it works before disabling support for it.

140 Chapter 1. Contents

CollectiveAccess Documentation, Release 1.8

dont_use_imagick = 0

If you have ImageMagick or GraphicsMagick installed and PDFs are being inexplicably rejected try setting the cor-
responding option to 1. It has been observed that ImageMagick chokes on some PDFs. Setting this option will force
CA to use Zend_PDF to identify uploaded PDF’s, which often resolves the issues at the expense of greater memory
consumption.

dont_use_imagemagick_to_identify_pdfs = 0
dont_use_graphicsmagick_to_identify_pdfs = 0

If you’re mostly dealing with large video files or images and don’t care about PDF support (or you’re using Graph-
ics/ImageMagick for identifying PDFs), you can disable Zend PDF support here. Zend PDF always tries to load the
whole fine into memory, which for video files can be several GB and usually results in memory_limit errors.

dont_use_zendpdf_to_identify_pdfs = 1

CollectiveAccess supports three methods for generating PDF output for download and printing: dompdf (slower; built-
in), wkhtmltopdf (faster; requires additional software installation) and phantomjs (faster; requires additional software
installation). By default it will favor using wkhtmltopdf if available, falling back to phantomjs and then to dompdf
which is always available.

You can override the build in preference and force the use of a specific PDF generator by uncommenting and setting
this option to one of the following:

• wkhtmltopdf

• phantomjs

• dompdf

use_pdf_renderer = wkhtmltopdf

Only media than can be identified by a plugin may be uploaded. If you want to be able to upload any file and have it
treated as media, even if the internals of the file cannot be parsed set this to a non-zero value. When set the BinaryFile
media plugin is enabled, which will store any unidentifiable uploaded file as binary data. No previews or in-browser
viewing will be possible for these files.

accept_all_files_as_media = 0

PHPs builtin function exif_read_data (http://php.net/manual/en/function.exif-read-data.php) is known to cause unex-
pected crashes with some files in some versions of PHP, particularly those shipped with RedHat or CentOS Linux.
If you experience any weird behavior while processing large files with extensive EXIF metadata, try enabling this
setting. If enabled, CollectiveAccess tries to extract metadata using alternate sources like exiftool or GraphicsMagick.

dont_use_exif_read_data = 0

Alternatively if you experiencing out-of-memory issues while importing media it may well be due to very large EXIF
metadata blocked embedded in the file. You can limit the size of metadata to be imported here by specifying the
threshold in bytes (Eg. 1048576 = 1mb)

dont_use_exif_read_data_if_larger_than = 2097152

Files with large embedded metadata blocks may cause out-of-memory errors and/or complicate backup of the datase.
You can limit the size of embedded metadata to be extracted during media loading here by specifying the threshold in
bytes (Eg. 1048576 = 1mb) Extraction of embedded metadata for media with metadata exceeding the threshold will
be skipped. Set to zero or omit if you want all metadata regardless of length to be extracted.

1.18. Configuring Providence 141

http://php.net/manual/en/function.exif-read-data.php

CollectiveAccess Documentation, Release 1.8

dont_extract_embedded_media_metdata_when_length_exceeds = 2097152

If you wish to allow the importing of object representation media and icons via http, https and ftp urls set this to 1.
Letting users employ your CA installation as a proxy for downloading arbitrary URLs could be seen as a security hole
in some cases, so enable this option only if you really need it.

allow_fetching_of_media_from_remote_urls = 0

If you wish to allow the linking to existing object representations in the manner other relationships set the relevant
directives below to 1. Using representations as records that can be targets of relationships can be confusing and, well,
odd for many common setups. Still, when you need this behavior you need it, so here it is :-)

ca_objects_allow_relationships_to_existing_representations = 0
ca_object_lots_allow_relationships_to_existing_representations = 0
ca_entities_allow_relationships_to_existing_representations = 0
ca_places_allow_relationships_to_existing_representations = 0
ca_occurrences_allow_relationships_to_existing_representations = 0
ca_collections_allow_relationships_to_existing_representations = 0
ca_storage_locations_allow_relationships_to_existing_representations = 0
ca_list_items_allow_relationships_to_existing_representations = 0
ca_loans_allow_relationships_to_existing_representations = 0
ca_movements_allow_relationships_to_existing_representations = 0

Embedded metadata extraction

CA can extract and import metadata embedded in upload media using external applications such as MediaInfo and
ExifTool and installation-specific data import mappings. The following options control user interaction and logging
for media embedded metadata import.

Users can select the import mapping they wish to use at the time of upload in the editing and batch media importer
interfaces when allow_user_selection_of_embedded_metadata_extraction_mapping is set to a
non-zero value.

When allowing user selection of mappings, allow_user_embedded_metadata_extraction_mapping_null_option
can be set to include a “no import” option. Setting this option to zero effectively forces import of embedded metadata
in all cases.

If it often desirable to have CA automatically select import mappings based upon the format of the uploaded file.
The embedded_metadata_extraction_mapping_defaults setting can be used to map media file MIME
types to mappings. MIME types may be specific (Ex. image/tiff for TIFF format images) or cover entire classes using
wildcards (Ex. image/* for images of any type).

embedded_metadata_extraction_mapping_defaults = {
video/* = example_mediainfo_mapping,
image/* = example_exif_tool_mapping,
application/pdf = pdf_metadata_import

}

The values are the right side of the map must be valid data import mapping codes, as defined in the code setting of a
mapping worksheet.

How much information is logged when performing an embedded metadata import can be controlled using the
embedded_metadata_extraction_mapping_log_level setting. Valid values are DEBUG, NOTICE,
INFO, WARN, ERR, CRIT and ALERT, where DEBUG logs the most (sometimes too much) information, and levels
beyond ERR log only the most critical errors. It is generally best to leave this setting on DEBUG when testing and use
NOTICE or INFO if DEBUG is providing too much information.

142 Chapter 1. Contents

CollectiveAccess Documentation, Release 1.8

Video preview frame generation

You can have CA generate preview frames from uploaded video These settings control how (and if) the preview frames
are generated

Should we generate frames? (Set to 1 for yes, 0 for no)

video_preview_generate_frames = 1

The minimum number of preview frames to generate in any situation CA will adjust timing parameters to ensure at
least this number of frames is generated.

video_preview_min_number_of_frames = 10

The maximum number of preview frames to generate in any situation CA will always stop generating frames when it
hits this limit

video_preview_max_number_of_frames = 100

The time between extracted frames; you can enter this is timecode notation (eg. 10s = 10 seconds; 1:10 = 1 minute,
10 seconds)

video_preview_interval_between_frames = 30s

The time relative to the start of the video at which to start extracting preview frames; this can be used to ensure you
don’t generate frames from blank leader footage

video_preview_start_at = 2s

The time interval relative to the end of the video at which to stop extracting preview frames; this can be used to ensure
you don’t generate frames from blank footage at the end of a video

video_preview_end_at = 2s

The time relative to the start of the video at which the “main” video poster preview is being extracted. Express as an
absolute time (Ex. 1h 5m 3s) or as a precentage of duration (Ex. 50%)

video_poster_frame_grab_at = 5s

Document preview page generation

You can have CA generate preview page images from uploaded documents (only PDFs currently) These settings
control how (and if) the preview pages are generated

Should we generate pages? (Set to 1 for yes, 0 for no)

document_preview_generate_pages = 1

The maximum number of preview pages to generate in any situation CA will always stop generating page images
when it hits this limit

document_preview_max_number_of_pages = 500

The number of pages between extracted pages; set to 1 if you want to generate all pages; set to 10 if you only want to
generate every 10th page

1.18. Configuring Providence 143

CollectiveAccess Documentation, Release 1.8

document_preview_interval_between_pages = 1

The page number at which to start extracting pages

document_preview_start_page = 1

Resolution to rasterize PDF pages with, in DPI

document_preview_resolution = 300

JPEG quality to rasterize PDF pages with (0-100)

document_preview_quality = 95

Set to non-zero value if you do not wish to generate representation annotation previews These previews are discrete
audio/video files covering a given annotation.

dont_generate_annotation_previews = 1

Batch media processing

Root directory of staging area for media import – any media in this directory will appear in media importer file listings

batch_media_import_root_directory = <ca_base_dir>/import

Allow data importer to pull media from arbitrary directories using paths in the data to be imported. If you don’t trust
the data being uploaded (or the people doing the uploading) leave this set to zero.

allow_import_of_media_from_any_directory = 0

mediaFilenameToObjectIdnoRegexes = {
filename_exactly = {

displayName = _(Filename exactly),
regexes = { "^(.*)$" }

},
filename_without_extension = {

displayName = _(Filename without extension),
regexes = { "(.*?)\\.[A-Za-z0-9]+$" }

},
filename_with_page_number_included = {

displayName = _(Filename with page number - page number included),
regexes = { "(.*?\\.[A-Za-z0-9\\-]+)\\.[A-Za-z]+$", "(.*?)\\.[A-Za-z0-9]+$" }

},
filename_with_page_number = {

displayName = _(Filename with page number - page number stripped),
regexes = { "(.*?)\\.[A-Za-z0-9\\-]+\\.[A-Za-z]+$" }

}
}

Uncomment and customize the following if you want to transform the names of your media files using Perl-
compatible regular expressions (http://pcre.org). The setting is basically a wrapper around PHP’s preg_replace func-
tion (http://php.net/manual/en/function.preg-replace.php). Each replacement consists of a key (basically a name), a
list of “search” regular expressions (usually 1) and a list of “replace” patterns. Both lists must have the same length,
i.e. there must be a “replace” pattern for each search regular expression. For more information on the syntax, please

144 Chapter 1. Contents

http://pcre.org
http://php.net/manual/en/function.preg-replace.php

CollectiveAccess Documentation, Release 1.8

refer to the documentation for preg_replace. Note that the media importer will try to mach the results of these re-
placements to CollectiveAccess records using the “mediaFilenameToObjectIdnoRegexes” list above for each file or
directory name IN ADDITION to whatever the original name was. The original file name is matched first.

mediaFilenameReplacements = {
replace_period_w_dash = {

search = { "([A-Za-z0-9]+)\\.([0-9]+)\\.([A-Za-z0-9]+)" },
replace = { "$1-$2.$3" }

},
}

List of fields to attempt to match filename-extracted data on Matching will be performed on fields in order, with the
first matching record used for import.

You can specify intrinsic field names (Eg. idno), metadata element codes or “preferred_labels” and “nonpre-
ferred_labels” to match on labels

batch_media_import_match_on = [idno]

Batch metadata import

batch_metadata_import_log_directory = <ca_base_dir>/app/log

Directory to temporarily stash ajax-based uploads of media in

ajax_media_upload_tmp_directory = <ca_app_dir>/tmp

Max time in seconds to let media live in tmp directory before it can be removed

ajax_media_upload_tmp_directory_timeout = 86400

Object representation download options

Media versions to provide downloads of

ca_object_representation_download_versions = [original, large, medium, small]

Set maximum number of files to allow to be downloaded in one go. Leave set to 0 or blank for no limit. maxi-
mum_download_file_count =

Task queue set up (deferred processing of uploaded media)

taskqueue_handler_plugins = <ca_lib_dir>/Plugins/TaskQueueHandlers
taskqueue_tmp_directory = <ca_app_dir>/tmp
taskqueue_max_opo_processes = 4
taskqueue_process_timeout = 3600
taskqueue_max_items_processed_per_session = 100

Admin

Nit picky stuff related to system configuration and administration.

1.18. Configuring Providence 145

CollectiveAccess Documentation, Release 1.8

Character set to use (usually utf-8; might be ISO-8859-1)

character_set = utf-8

System configuration check options (under “Manage” > “Administrate” > “Configuration Check”)

The configuration check can do a thorough, but time consuming, check of file permissions and other
settings. These checks can be useful but on some servers, especially those using file systems mounted
over a network, they can be very slow. If you are on such a server you can disable all “expensive”
configuration checks here.

dont_do_expensive_configuration_checks_in_web_ui = 0

Configuration exporter options

configuration_export_only_system_displays = 1
configuration_export_only_system_search_forms = 1

Exclude lists from configuration export with more than a specified number of items. If set to zero no limit is enforced.

configuration_export_exclude_lists_larger_than = 0

list of list codes to exclude from configuration export

configuration_export_exclude_lists = []

Object lot inheritance

don’t inherit lot relationship from parent object

ca_objects_dont_inherit_lot_id_from_parent = 0

Restrict editing of codes for list and metadata elements

Allowing free editing and code and data type settings can result in invalid configuration. The ability to edit these
values once set can be restricted here.

ca_lists_dont_allow_editing_of_codes_when_in_use = 0
ca_list_items_dont_allow_editing_of_codes_when_in_use = 0
ca_metadata_elements_dont_allow_editing_of_codes_when_in_use = 0
ca_metadata_elements_dont_allow_editing_of_data_types_when_in_use = 0

SMS notifications

enable_sms_notifications = 0

Each SMS plugin supports a specific gateway. For now only SendHub.com is supported.

146 Chapter 1. Contents

CollectiveAccess Documentation, Release 1.8

sms_plugin = SendHub
sms_user = MY_SENDHUB_USERNAME
sms_api_key = MY_SENDHUB_API_KEY

Session settings

session_lifetime = 31536000
session_domain =

Email notifications

Settings for notifications system used for metadata-based alerts

notification_email_sender = no-reply@<site_hostname>
notification_email_subject = (<app_display_name>) Metadata Notification from
→˓CollectiveAccess

Export

File names for data export download files

If the given display template doesn’t yield a usable result, the exporter falls back to relatively nondescript defaults
single item exports via inspector in the corresponding editor

ca_objects_single_item_export_filename = ^ca_objects.idno
ca_object_lots_single_item_export_filename = ^ca_object_lots.idno_stub
ca_entities_single_item_export_filename = ^ca_entities.idno
ca_places_single_item_export_filename = ^ca_places.idno
ca_occurrences_single_item_export_filename = ^ca_occurrences.idno
ca_collections_single_item_export_filename = ^ca_collections.idno
ca_lists_single_item_export_filename = ^ca_lists.list_code
ca_list_items_single_item_export_filename = ^ca_list_items.idno
ca_loans_single_item_export_filename = ^ca_loans.idno
ca_movements_single_item_export_filename = ^ca_movements.idno
ca_object_representations_single_item_export_filename = ^ca_object_representations.
→˓idno
ca_representation_annotations_single_item_export_filename = ^ca_representation.
→˓annotations.annotation_id
ca_storage_locations_single_item_export_filename = ^ca_storage_locations.idno
ca_tours_single_item_export_filename = ^ca_tours.tour_code
ca_tour_stops_single_item_export_filename = ^ca_tours_stops.idno

batch exports via sets or browse results

ca_objects_batch_export_filename = objects_batch_export
ca_object_lots_batch_export_filename = lots_batch_export
ca_entities_batch_export_filename = entities_batch_export
ca_places_batch_export_filename = places_batch_export
ca_occurrences_batch_export_filename = occurrences_batch_export
ca_collections_batch_export_filename = collections_batch_export
ca_lists_batch_export_filename = lists_batch_export

(continues on next page)

1.18. Configuring Providence 147

CollectiveAccess Documentation, Release 1.8

(continued from previous page)

ca_list_items_batch_export_filename = list_items_batch_export
ca_loans_batch_export_filename = loans_batch_export
ca_movements_batch_export_filename = movements_batch_export
ca_object_representations_batch_export_filename = representations_batch_export
ca_representation_annotations_batch_export_filename = annotations_batch_export
ca_storage_locations_batch_export_filename = storage_locations_batch_export
ca_tours_batch_export_filename = tours_batch_export
ca_tour_stops_batch_export_filename = tour_stops_batch_export

List of alternate destinations for data exports. The only supported type for now is ‘github’.

For GitHub repositories it’s highly recommended to not enter your main account password here but to use a personal
access token instead. You can create it in the GitHub account settings under “Applications”>”Personal Access Tokens”.
The token has to have ‘repo’ access.

exporter_alternate_destinations = {
github = {

type = github,
display = GitHub repository,
user credentials
username = your_github_username,
token = enter_access_token_here,
repository information
owner = enter_repository_owner,
repository = collectiveaccess_export,
base_dir = exports/from_ca,
branch = master,
update_existing = 1

},
}

You’re done. . .

. . . .probably. Most users don’t modify the configs below.

URL configuration (paths to controllers and themes)

auth_login_path = system/auth/login
auth_login_url = <ca_url_root>/index.php/system/auth/login
auth_logout_url = <ca_url_root>/index.php
controllers_directory = <ca_app_dir>/controllers

Url path to error display page; user will be directed here upon unrecoverable error (eg. bad controller or action)

error_display_url = <ca_url_root>/index.php/system/Error/Show

Url to redirect user to when nothing is specified (eg. they go to /index.php) ONLY PUT THE CON-
TROLLER/ACTION PATH HERE - leave out the ‘index.php’

default_action = /Dashboard/Index

Services

148 Chapter 1. Contents

CollectiveAccess Documentation, Release 1.8

service_controllers_directory = <ca_app_dir>/service/controllers
service_default_action = /search/rest/doSearch
service_view_path = <ca_app_dir>/service/views

Paths to other config files

data_model = <ca_conf_dir>/datamodel.conf
user_pref_defs = <ca_conf_dir>/user_pref_defs.conf
external_applications = <ca_conf_dir>/external_applications.conf
media_volumes = <ca_conf_dir>/media_volumes.conf
file_volumes = <ca_conf_dir>/file_volumes.conf
default_media_icons = <ca_conf_dir>/default_media_icons.conf
search_config = <ca_conf_dir>/search.conf
browse_config = <ca_conf_dir>/browse.conf
media_processing_settings = <ca_conf_dir>/media_processing.conf
annotation_type_config = <ca_conf_dir>/annotation_types.conf
attribute_type_config = <ca_conf_dir>/attribute_types.conf
application_monitor_config = <ca_conf_dir>/monitor.conf
assets_config = <ca_conf_dir>/assets.conf
bundle_type_config = <ca_conf_dir>/bundle_types.conf
xml_config = <ca_conf_dir>/xml.conf
user_actions = <ca_conf_dir>/user_actions.conf
find_navigation = <ca_conf_dir>/find_navigation.conf
media_display = <ca_conf_dir>/media_display.conf
media_metadata = <ca_conf_dir>/media_metadata.conf
access_restrictions = <ca_conf_dir>/access_restrictions.conf
datetime_config = <ca_conf_dir>/datetime.conf
authentication_config = <ca_conf_dir>/authentication.conf
services_config = <ca_conf_dir>/services.conf
visualization_config = <ca_conf_dir>/visualization.conf
prepopulate_config = <ca_conf_dir>/prepopulate.conf
linked_data_config = <ca_conf_dir>/linked_data.conf

Path to navigation config file - defines menu structure

nav_config = <ca_conf_dir>/navigation.conf

OAI configuration

oai_harvester_config = <ca_conf_dir>/oai_harvester.conf
oai_provider_config = <ca_conf_dir>/oai_provider.conf

Path to application plugins

application_plugins = <ca_app_dir>/plugins

Path to dashboard widgets

dashboard_widgets = <ca_app_dir>/widgets

1.18. Configuring Providence 149

CollectiveAccess Documentation, Release 1.8

Password reset parameters

password_reset_url = <site_host><ca_url_root>/index.php?action=reset_password&form_
→˓action=reset

ID numbering (for objects, object lots and authorities)

multipart_id_numbering_config = <ca_conf_dir>/multipart_id_numbering.conf

Media and file processing paths

media_plugins = <ca_lib_dir>/Plugins/Media
file_plugins = <ca_lib_dir>/Plugins/File

Directory to use for Tilepic generation temporary files

tilepic_tmpdir = <ca_app_dir>/tmp

Name of plugin class to use for id number field in objects, object lots and authorities that support id numbering
(entities, places, collections and occurrences)

ca_objects_id_numbering_plugin = MultipartIDNumber
ca_object_lots_id_numbering_plugin = MultipartIDNumber
ca_entities_id_numbering_plugin = MultipartIDNumber
ca_places_id_numbering_plugin = MultipartIDNumber
ca_collections_id_numbering_plugin = MultipartIDNumber
ca_occurrences_id_numbering_plugin = MultipartIDNumber
ca_list_items_id_numbering_plugin = MultipartIDNumber
ca_loans_id_numbering_plugin = MultipartIDNumber
ca_movements_id_numbering_plugin = MultipartIDNumber
ca_tours_id_numbering_plugin = MultipartIDNumber
ca_tour_stops_id_numbering_plugin = MultipartIDNumber
ca_object_representations_id_numbering_plugin = MultipartIDNumber
ca_storage_locations_id_numbering_plugin = MultipartIDNumber
ca_site_pages_id_numbering_plugin = MultipartIDNumber
ca_site_page_media_id_numbering_plugin = MultipartIDNumber

Formats for form elements

If set text of “required_field_marker” will be displayed for bundles in editors for which input is required

show_required_field_marker = 0

Text to display for bundles in editors for which input is required

required_field_marker = (Required)

These are used to format data entry elements in various editing formats. Don’t change them unless you know what
you’re doing Used for intrinsic fields (simple fields)

150 Chapter 1. Contents

CollectiveAccess Documentation, Release 1.8

form_element_display_format = <div class='formLabel'>^EXTRA^LABEL
^ELEMENT</div>
form_element_display_format_without_label = <div class='formLabel'>^ELEMENT</div>
form_element_error_display_format = <div class='formLabel'>^EXTRA^LABEL (<span class=
→˓'formLabelError'>^ERRORS)
^ELEMENT</div>

Used for bundle-able fields such as attributes

bundle_element_display_format = <div class='bundleLabel'>^LABEL ^DOCUMENTATIONLINK ^
→˓ELEMENT</div>
bundle_element_display_format_without_label = <div class='formLabel'>^ELEMENT</div>
bundle_element_error_display_format = <div class='bundleLabel'>^LABEL (<span class=
→˓'bundleLabelError'>^ERRORS)
^ELEMENT</div>

Used for the ‘idno’ field of bundle-providers (Eg. ca_objects, ca_places, etc.)

idno_element_display_format = <div class='formLabel'>^LABEL
^ELEMENT <span id=
→˓'idnoStatus'></div>
idno_element_display_format_without_label = <div class='formLabel'>^ELEMENT <span id=
→˓'idnoStatus'></div>
idno_element_error_display_format = <div class='formLabel'>^LABEL (<span class=
→˓'formLabelError'>^ERRORS)
^ELEMENT </div>

Proxy server configuration for web services

In some larger networks servers are required to run their HTTP/HTTPS requests through a proxy server. If this applies
to your setup, uncomment the following lines and enter your proxy configuration here.

web_services_proxy_url = tcp://127.0.0.1:8080

1.18.2 Browse.conf

CollectiveAccess includes a configurable Browse Engine that powers all faceted browse and search features. The
engine is capable of browsing for, and returning sets of, any of the primary item types: objects, object lots, entities,
places, occurrences, collections and storage locations. The engine automatically caches both results and generated
facet content to improve performance. If two users perform the same browse, results for the second browse will be
picked up from the cache saving time. Similarly, facet content, which is often costly to generate, is shared across
similar browses increasing responsiveness.

Current use

Faceted browse is currently used in the Providence (back-end) “Find” interfaces for all primary item types. It is also
used to provide browse services in the Pawtucket public-access front-end.

Configuration

Any intrinsic field (ie. a field that is always part of an item such as extent and extent_units in object lots), metadata
attribute or related authority may be used for browsing. Since every deployment of CA is different, and the metadata
schema varies from one installation to another, you must tell the browse engine what sorts of information you want to
be browse-able and how that data should be displayed to the user. This is done by modifying the browse configuration
file in app/conf/browse.conf. As with all other CA configuration files, browse.conf is written using the standard CA
configuration syntax.

1.18. Configuring Providence 151

CollectiveAccess Documentation, Release 1.8

Top
level
key

Description

cache_timeoutNumber of seconds to keep information for a cached browse around before discarding. The suggested value
for this key depends upon how the browse is being uses. A cached browse will not reflect changes made
to the data since its creation, so for a busy backend system this value should be relative low: 300 seconds
(5 minutes) is a reasonable value. For front-end systems where the catalogue data is not changing often,
86400 seconds (1 day) may be a more appropriate value. If you want to disable caching set this key to 0.

<browse_table_name>For each item type you wish to support browsing on you must define an associative array attached to the
item table name: ca_objects, ca_entities, ca_places, ca_occurrences, ca_collections, ca_object_lots, and
ca_storage_locations. The values set in each item array define the behavior of the browse for that item type.
These values are defined below.

For each item type you want to be browse-able, you must define a top-level key with the item’s table name (eg.
ca_objects for objects) and as associative array value. The array must contain a facets key whose value is in turn an
associative array defining each available browse facet for the item type. The keys of the facets array are arbitrary code
name for the facets, it doesn’t matter what they are so long as they are unique within the facet list. The values are yet
another associative array which actually defines the characteristics of the facet.

Each facet has a type and some (but not all) of the facet definition keys are dependent upon this type. The follow types
of facets are currently supported:

152 Chapter 1. Contents

CollectiveAccess Documentation, Release 1.8

Facet
type

Description

au-
thor-
ity

Authority facets allow for browsing on cataloguing applied to the browsed item from a related authority. Eg.
if you want to browse for objects by place name, you’d set up a facet of type authority with options to cover
the places authority.

field Allows browsing on items using an intrinsic field. These include idno (identifier) and the handful legacy
intrinsics such as ca_objects extent.

field-
List

Allows browsing on lists that are directly related to an item via an intrinsic field. These include the type lists
for each item type (eg. browse by object types), access and workflow status.

nor-
mal-
ized-
Dates

Allows browsing on date attributes where the values have been normalized, or adjusted to span periods of
time. Since dates are often specific to the day (or even hour, minute and second), browsing on unmodified
date data is usually undesirable. normalizedDate facets will return browse choices where dates have been
collapsed into days, months, years, decades or centuries.

at-
tribute

Allows browsing on any simple single-value attribute. Values are presented as-is, so you should only con-
figure browsing on metadata elements that have a relatively small range of possible values. Browsing on an
attribute with narrative text content will not work well. Browsing on an attribute with typed-in text indicating
materials or location may work well if data quality is relatively high.

la-
bel

Allows browsing on preferred and non-preferred labels associated with the browsed item. This can be useful
for creating index-like lists of titles for a given type of item. Since the facet will list all unique label values
for a type of item it is mainly useful in smaller systems with relatively few items or where records share a
manageable number of labels. For larger systems with many distinct label values this facet type is likely to
provide poor usability and performance.

has Provides a means to browse for items that either have at least one relationship to some other type of item, or
for items with no relationships to a specified type of item. The option values for this facet are always “yes”
and “no.” This type of facet is primarily useful for retrieving objects with or without object representations
(media), but it can also be used for reporting and data quality assessment purposes. For example, this facet
could be configured to all retrieval of all objects without an associated entity.

dupei-
dno

Allows browsing for records with identifiers that are duplicated by at least one other record. Facet values
are the number of repeats an identifier has. This type of facet is useful for facilitating clean up of data where
identifiers have been erroneously reused. Available from version 1.7.7

lo-
ca-
tion

Allows browsing for records on current location, as defined in the current location policy configuration
(current_location_criteria in app.conf).

vi-
o-
la-
tions

Allows browsing for records that are in violation of rules in the metadata dictionary. (Note that the metadata
dictionary is currently an undocumented feature with no configuration UI).

check-
outs

Allows browsing for objects based upon checkout status set by the library check in/out module.

in-
Home-
Lo-
ca-
tion

Allows browsing for objects based upon whether they are currently in their home location or not, as defined
in the current location policy configuration (current_location_criteria in app.conf). (Available from version
1.7.9)

For all types of facets the following configuration keys are defined:

1.18. Configuring Providence 153

CollectiveAccess Documentation, Release 1.8

Facet
key

Description Manda-
tory?

in-
def-
i-
nite_article

The indefinite article to use when displaying the facet label. Yes

mul-
ti-
ple

If this directive is set to 1 the facet will perform an OR browse instead of an AND browse. With
“multiple” a user is able to select more than one value per facet, for example, in a date browse a user
can find records cataloged as 1990 or 1991.

No

la-
bel_singular

The name to display for this facet, in the singular (eg. “place name”). Yes

la-
bel_plural

The name to display for this facet, in the plural (eg. “place names”). Yes

de-
scrip-
tion

Description of the facet. This text appears on browse landing page in Pawtucket No

group_modeThe method by which to group facet values for display. Currently ‘alphabetical’, ‘hierarchical’ and
‘none’ groupings are supported. ‘Alphabetical’ mode groups items alphabetically by the first letter
in their name; ‘hierarchical’ displays hierarchical facets (authorities only) in an interactive hierarchy
browser; ‘none’ simply lists items out.

No

in-
di-
vid-
ual_group_display

If set to a non-zero value, each group in the facet will be displayed separately and loaded on-demand.
This can improve performance in some cases.

No

type_restrictionsAn optional list of browse item types to restrict use of this facet to. This is useful if you are restricting
your browses to specific types of browse items (ex. occurrences of type “exhibitions” only) and
want to have different facet configurations for each type-specific browse. By restricting a facet to
“exhibitions”, for example, you ensure that it will only appear when you are browsing specifically
for exhibitions, or if you are performing an unrestricted browse. You can specify the restrictions are
numeric type_id’s or alphanumeric type codes. The latter is generally preferred as it is easier to read,
understand and maintain.

No

re-
quires

An optional list of facet names, at least one of which must appear in the browse criteria (ie. have been
used in the current browse), for the facet to be available. This is useful if you have a facet that is only
relevant in the context of a selection limited by another facet. For example, if you have a facet defined
for countries and another for state/provinces, you can ensure that the state/province facet is only made
available to the user if a country has already been selected for the browse by making state/providence
“require” the country facet.

No

sin-
gle_value

If set to a valid facet value, then selecting the facet will browse on the specified value rather than
opening up a browse facet display with choices. This option can be useful for facets with one or two
values, where explicit links are preferred over a list interface.

No

facet_groupsA list of tags (“groups”) to apply to the facet. Facets displayed by the browse engine can be limited
using these tags, via the browse engine setFacetGroup() method. Facet groups are mainly useful when
you need to have distinct sets of facets display in different contexts.

No

rel-
a-
tive_to

Browse facets are typically generated relative to the table being browsed. If you are browsing objects,
for example, a facet of related entities will display names of entities related directly to objects. rel-
ative_to, when set to a table other than the table being browsed, enables you to generate facets with
values from a table related to the one you are browsing. You could, for example, generate a facet
of birth dates of entities related to objects, or a list of places related to entities related to objects. In
effect this is an indirect browse. Even though the facet values are related to the relative_to table, the
results of the browse are still the same. relative_to can be very useful when metadata you want to
browse by is actually related to a table different than the one you wish to get results for. Value must
be a valid item table name (Eg. ca_objects, ca_entities, ca_places, ca_occurrences, ca_collections,
ca_storage_locations, ca_list_item, Etc.)

No

ac-
cess

A list of access values to restrict facet visibility to. Access values are numerical values used to con-
trol public visibility of records. Each user, authenticated or not, while be associated with one or
more access values. For non-authenticated users access values will be those specified in the pub-
lic_access_settings directive in app.conf. For authenticated users it will be a list of values conferred
by the users associated roles. Any user having any of the access values for the facet will be able to
use the facet. If this option is omitted or left empty no restriction will be applied. Available from
version 1.7.7

No

roles A list of user role code to restrict facet visibility to. Any user having any of the roles listed for the
facet will be able to use the facet. If this option is omitted or left empty no restriction will be applied.
Available from version 1.7.7

No

154 Chapter 1. Contents

CollectiveAccess Documentation, Release 1.8

For facets of type authority these additional keys are defined:

Facet
key

Description Manda-
tory?

table The authority table to browse by (Eg. ca_objects, ca_entities, ca_places, ca_occurrences,
ca_collections, ca_storage_locations, ca_list_item)

Yes

rela-
tion-
ship_table

The “linking table” between the item type your are browsing for and the authority you are brows-
ing by. For example, if you are browsing for objects by entities this table is ca_objects_x_entities.
See the installation profile manual for a full list of these table names.

Yes

re-
strict_to_types

An optional list of types for the item you are browsing by to restrict the facet to. The types can be
internal item_ids for the types or ca_list_item.idno values (eg. list item codes set by the installation
profile). This key lets you set up facets that only browse a subset of a given authority: only places
of type ‘river’ for instance.

No

re-
strict_to_relationship_types

An optional list of relationship types to restrict the facet to. The types can be internal relationship
type_ids for the relationship types or alphanumeric type codes (eg. type codes set by the installa-
tion profile). This key lets you set up facets that only browse a subset of a given authority: only
places linked to objects with relation type ‘depicts’)

No

ex-
clude_relationship_types

An optional list of relationship types to exclude from the facet. The types can be internal rela-
tionship type_ids for the relationship types or alphanumeric type codes (eg. type codes set by the
installation profile). This key lets you set up facets that only browse a subset of a given authority:
only places linked to objects with relation types other than ‘depicts’)

No

gener-
ate_facets_for_types

If set to a non-zero value, will cause the current facet to be automatically converted into a separate
facet for each type of the item type being browsed by. This option is typically employed to provide
browsing of occurrences where the various types are unrelated, but you can also use this on other
authorities to provide a fine-grained browse without having to hardcode the type hierarchy into
the configuration.

No

show_all_when_first_facetIf set to a non-zero value, will force this facet to include all items in the authority whether than
are related to the underlying browse table or not when the browse has no criteria set (ie. when the
facet is the first one chosen in the browse). Default is false.

No

or-
der_by_label_fields

A list of fields in authority label table to sort by. You can do multi-level sorting by specifying
more than more field in the list. Ascending sort order is assumed. The list should be only field
names; do not include the table name

No

group_modeThe method by which to group facet values for display. Currently ‘alphabetical’, ‘hierarchical’
and ‘none’ groupings are supported. ‘Alphabetical’ mode groups items alphabetically by the first
letter in their name; ‘hierarchical’ displays hierarchical facets (authorities only) in an interactive
hierarchy browser; ‘none’ simply lists items out.

No

show_hierarchySet to non-zero value to display hierarchy on items in this facet; default is to not display hierarchy No
hier-
archi-
cal_delimiter

Character(s) to place between elements of the hierarchy No

re-
move_first_items

Number of items to trim off the top of the hierarchy (leave blank or set to 0 to trim nothing) No

hierar-
chy_limit

Maximum length of hierarchy to display (leave blank to return hierarchy unabridged) No

hierar-
chy_order

Direction to display hierarchy in. Can be ASC or DESC (default is DESC). ASC displays the root
first; DESC displays the lowest element in the hierarchy first

No

For facets of type field these additional keys are defined:

Facet key Description Mandatory?
field The field in the item type being browsed to browse by (Eg. idno, extent) Yes

For facets of type fieldList these additional keys are defined:

1.18. Configuring Providence 155

CollectiveAccess Documentation, Release 1.8

Facet
key

Description Manda-
tory?

field The field in the item type being browsed to browse by (Eg. type_id, item_status_id,
access, status)

Yes

display The field to display in the facet. If not set the preferred label is displayed. No

For facets of type normalizedDates these additional keys are defined:

Facet key Description Manda-
tory?

ele-
ment_code

The element code of the metadata element to be browsed. Must have an attribute type of
DateRange

Yes

normal-
ization

Sets the method used to normalize date values. Supported values are days, months, years,
decades, centuries.

Yes

sort Sets the order in which to sort the returned dates. A value of ‘DESC’ will sort the dates
in descending order (most recent first), which a value of ‘ASC’ will sort in ascending order
(oldest first). The default if this is not specified is ascending order.

No

mini-
mum_date

If set, the facet will only include dates that occur after the specified value. The value can be
any valid date expression (eg. 1900, 12/7/1914, etc.).

No

maxi-
mum_date

If set, the facet will only include dates that occur before the specified value. The value can be
any valid date expression (eg. 1900, 12/7/1914, etc.).

treat_before_dates_as_circaIf set facet will treat after “before xxxx” dates as circa dates. Available from version 1.7.7 No
treat_after_dates_as_circaIf set facet will treat after “after xxxx” dates as circa dates. Available from version 1.7.7 No
in-
clude_unknown

If set facet will include an “unknown date” option to find records without any associated date.
Available from version 1.7.8

For facets of type attribute these additional keys are defined:

Facet
key

Description Manda-
tory?

ele-
ment_code

The element code of the metadata element to be browsed. Only attributes of type List and Text are
officially supported, but Numeric and Currency types tend to work well too. Other types may or
may not work as you would like (but usually will). For container elements, use the sub-element’s
element code.

Yes

sup-
press

A list of values to omit from the facet. If the metadata element is a list these should be list item_id’s
or idno’s. For other element types use the label value.

No

For facets of type label these additional keys are defined:

156 Chapter 1. Contents

CollectiveAccess Documentation, Release 1.8

Facet
key

Description Manda-
tory?

re-
strict_to_types

An optional list of types for the item you are browsing by to restrict the facet to. The types can be
internal item_ids for the types or ca_list_item.idno values (eg. list item codes set by the installation
profile). This key lets you set up facets that only browse a subset of a given authority: only places of
type ‘river’ for instance.

No

pre-
ferred_labels_only

If set to a non-zero value, will force this facet to include only preferred labels. Default is false:
include all labels, preferred and non-preferred.

No

group_modeThe method by which to group facet values for display. Currently only ‘alphabetical’ and ‘none’
groupings are supported. This mode groups items alphabetically by the first letter in their name.

No

or-
der_by_label_fields

Available from version 1.7.6. A list of fields in the label table to sort by. You can do multi-level
sorting by specifying more than more field in the list. Ascending sort order is assumed. The list
should be only field names; do not include the table name

No

tem-
plate

Available from version 1.7.6. A template to format returned labels with. This is primarily useful for
formatting entity labels, which are comprised of several component fields (surname, forename, mid-
dle name, displayname, Etc.). The template is text with label components specified by the field name
of the component preceded by a caret (“^”). For example, to format an entity label surname-comma-
forename style the template is “^surname, ^forename”. If no template is specified the primary display
field for the label is used.

No

For facets of type has these additional keys are defined:

Facet
key

Description Manda-
tory?

table The authority table to look for relationships to (Eg. ca_objects, ca_entities, ca_places,
ca_occurrences, ca_collections, ca_storage_locations, ca_list_item)

Yes

rela-
tion-
ship_table

The “linking table” between the item type your are looking for relationships to and the authority
you are browsing by. For example, if you are looking for objects with object representations this
table is ca_objects_x_object_representations.

Yes

re-
strict_to_types

An optional list of types for the item you are browsing by to restrict the facet to. The types
can be internal item_ids for the types or ca_list_item.idno values (eg. list item codes set by the
installation profile). This key lets you set up facets that only browse a subset of a given authority:
only places of type ‘river’ for instance.

No

re-
strict_to_relationship_types

An optional list of relationship types to restrict the facet to. The types can be internal relationship
type_ids for the relationship types or alphanumeric type codes (eg. type codes set by the installa-
tion profile). This key lets you set up facets that only browse a subset of a given authority: only
places linked to objects with relation type ‘depicts’.

No

ex-
clude_relationship_types

An optional list of relationship types to exclude from the facet. The types can be internal rela-
tionship type_ids for the relationship types or alphanumeric type codes (eg. type codes set by the
installation profile). This key lets you set up facets that only browse a subset of a given authority:
only places linked to objects with relation types other than ‘depicts’.

No

la-
bel_yes

Text to use for “yes” value facet option. If no specified defaults to “Yes”. No

la-
bel_no

Text to use for “no” value facet option. If no specified defaults to “No”. No

For facets of type dupeidno these additional keys are defined:

1.18. Configuring Providence 157

CollectiveAccess Documentation, Release 1.8

Facet
key

Description Manda-
tory?

re-
strict_to_types

An optional list of types for the item you are browsing by to restrict the facet to. The types can be
internal item_ids for the types or ca_list_item.idno values (eg. list item codes set by the installation
profile). This key lets you set up facets that only browse a subset of a given authority: only places
of type ‘river’ for instance.

No

ex-
clude_types

An optional list of types to exclude from the facet. The types can be internal item_ids for the types
or ca_list_item.idno values (eg. list item codes set by the installation profile). This key lets you set
up facets that only browse a subset of a given authority: all places with type other than ‘river’ for
instance.

No

For facets of type location these additional keys are defined:

158 Chapter 1. Contents

CollectiveAccess Documentation, Release 1.8

Facet key Description Mandatory?
display Dictionary of display parameters

for individual kinds of locations.
The format is similar to that
uses in app.conf for the cur-
rent_location_criteria policy. In
general you can set display tem-
plates for each kind of location us-
ing a format like this:

display = {
ca_storage_locations =

→˓{
related = {

template = ^ca_
→˓storage_locations.
→˓hierarchy.preferred_
→˓labels%delimiter=___

}
},

},

where first level keys are table
names and second level keys are
types. If omitted the config-
uration set in app.conf in cur-
rent_location_criteria is used.

No

collapse Dictionary controlling which sorts
of locations are collapsed into gen-
eral headings rather than displayed
individually. Keys of the dictio-
nary are table names and type sep-
arated with a slash (“/”). Values
are text with which to represent the
collapsed group in the browse facet.
For example, to collapse all occur-
rences of type “exhibition” into a
single facet value labeled “On loan”
use:
collapse = {
ca_occurrences/

→˓exhibition = On loan
}

Selecting “On loan” would return all
objects where the current location
is any exhibition. Without the col-
lapse setting, each exhibition would
be listed individually.

No

maximumBrowseDepth The element code of the metadata
element to be browsed. Must have
an attribute type of DateRange

No

policy The current value tracking policy to
use. If not specified the default pol-
icy is used.

1.18. Configuring Providence 159

CollectiveAccess Documentation, Release 1.8

For facets of type inHomeLocation these additional keys are defined:

Facet
key

Description Manda-
tory?

re-
strict_to_types

An optional list of types for the item you are browsing by to restrict the facet to. The types can be
internal item_ids for the types or ca_list_item.idno values (eg. list item codes set by the installation
profile). This key lets you set up facets that only browse a subset of a given authority: only places
of type ‘river’ for instance.

No

ex-
clude_types

An optional list of types to exclude from the facet. The types can be internal item_ids for the types
or ca_list_item.idno values (eg. list item codes set by the installation profile). This key lets you set
up facets that only browse a subset of a given authority: all places with type other than ‘river’ for
instance.

No

pol-
icy

The current value tracking policy to use. If not specified the default policy is used.

For facets of type violations these additional keys are defined:

Facet
key

Description Manda-
tory?

re-
strict_to_types

An optional list of types for the item you are browsing by to restrict the facet to. The types can be
internal item_ids for the types or ca_list_item.idno values (eg. list item codes set by the installation
profile). This key lets you set up facets that only browse a subset of a given authority: only places
of type ‘river’ for instance.

Yes

For facets of type checkouts these additional keys are defined:

Facet
key

Description Manda-
tory?

re-
strict_to_types

An optional list of types for the item you are browsing by to restrict the facet to. The types can be
internal item_ids for the types or ca_list_item.idno values (eg. list item codes set by the installation
profile). This key lets you set up facets that only browse a subset of a given authority: only places
of type ‘river’ for instance.

No

mode Determines what checkouts are browsed on. If set to “user” checkouts are shown by user (subject
to type determined by the ‘status’ option). If set to “all” all types of checkouts are shown in facet.
In this case ‘status’ is not used.

Yes

sta-
tus

Limits facet to a specific type of checkout when mode is set to “user”. Must be one of “all”,
“available”, “out”, “reserved”, “overdue”. Default is “all” when omitted.

No

Browse results when no criteria are defined

By default the browse will not return results if you attempt to execute a browse with no criteria defined. In principle, a
criteria-less browse should return all possible results – every item in your database. However, for most data sets such
a result set would be of limited use and slow to render. In most CA Providence and Pawtucket implementations, a
special “start browsing” display is used when no criteria are defined.

If you really do want all results returned when no criteria are defined you can force it on a per-table basis by setting
show_all_for_no_criteria_browse in the table-level block (the one that must contain the facets list). See the ca_objects
block in the example below to see how this is done.

160 Chapter 1. Contents

CollectiveAccess Documentation, Release 1.8

Avoiding Cache Confusion

Browse results are cached for a period of time defined by the cache_timeout value in your browse configuration. Once
cached, a browse result will be reused until it expires, even if you change your browse configuration in the meantime.
This has the effect of making it almost impossible to experiment with browse configuration while caching is enabled.
If you are developing or debugging a browse configuration, be sure to set cache_timeout to zero while you’re working.
Once your browse is working as you want it to re-enable the cache by setting the timeout to a reasonable value.
Caching significantly improves overall performance so you’ll probably want it enabled for every day use.

Example Configuration

A working browse.conf should look something like this:

Browse configuration

number of seconds to keep cached browses around
set to 0 to disable caching
cache_timeout = 60

Configuration for object browse
ca_objects = {

show_all_for_no_criteria_browse = 1,
facets = {

entity_facet = {
'type' can equal authority, attribute, fieldList,

→˓normalizedDates
type = authority,
table = ca_entities,
relationship_table = ca_objects_x_entities,
restrict_to_types = [],
restrict_to_relationship_types = [],
sort_by = [surname, forname],
group_mode = alphabetical,

indefinite_article = an,
label_singular = _(entity),
label_plural = _(entities)

},
place_facet = {

type = authority,
table = ca_places,
relationship_table = ca_objects_x_places,
restrict_to_types = [],
restrict_to_relationship_types = [],
sort_by = [name],
group_mode = alphabetical,

indefinite_article = a,
label_singular = _(place),
label_plural = _(places)

},
collection_facet = {

type = authority,
table = ca_collections,
relationship_table = ca_objects_x_collections,
restrict_to_types = [],

(continues on next page)

1.18. Configuring Providence 161

CollectiveAccess Documentation, Release 1.8

(continued from previous page)

restrict_to_relationship_types = [],
sort_by = [name],
group_mode = alphabetical,

indefinite_article = a,
label_singular = _(collection),
label_plural = _(collections)

},
occurrence_facet = {

type = authority,
table = ca_occurrences,
generate_facets_for_types = 1,
relationship_table = ca_objects_x_occurrences,
restrict_to_types = [],
restrict_to_relationship_types = [],
sort_by = [name],
group_mode = alphabetical,

indefinite_article = an,
label_singular = _(occurrence),
label_plural = _(occurrences)

},
term_facet = {

type = authority,
table = ca_list_items,
relationship_table = ca_objects_x_vocabulary_terms,
restrict_to_types = [],
restrict_to_relationship_types = [],
sort_by = [name],
group_mode = alphabetical,

indefinite_article = a,
label_singular = _(term),
label_plural = _(terms)

},
type_facet = {

type = fieldList,
field = type_id,
sort_by = [name],
group_mode = alphabetical,

indefinite_article = a,
label_singular = _(type),
label_plural = _(types)

},
object_subtype_facet = {

type = attribute,
element_code = object_subtypes,

requires = type_facet,
group_mode = alphabetical,

label_singular = _("Sub-Type"),
label_plural = _("Sub-Types")

},
status_facet = {

type = fieldList,
(continues on next page)

162 Chapter 1. Contents

CollectiveAccess Documentation, Release 1.8

(continued from previous page)

field = status,
sort_by = [name],
group_mode = alphabetical,

indefinite_article = a,
label_singular = _(status),
label_plural = _(statuses)

},
access_facet = {

type = fieldList,
field = access,
sort_by = [name],
group_mode = alphabetical,

indefinite_article = an,
label_singular = _(access status),
label_plural = _(access statuses)

},
date_facet = {

type = normalizedDates,
element_code = creation_date,

'normalization' can be: years, decades, centuries
normalization = years,
sort_by = [name],
group_mode = none,

indefinite_article = a,
label_singular = _(year),
label_plural = _(years)

}
}

}

Configuration for object lot browse
ca_object_lots = {

facets = {
entity_facet = {

'type' can equal authority, attribute, fieldList,
→˓normalizedDates

type = authority,
table = ca_entities,
relationship_table = ca_object_lots_x_entities,
restrict_to_types = [],
restrict_to_relationship_types = [],
sort_by = [surname, forname],
group_mode = alphabetical,

indefinite_article = an,
label_singular = _(entity),
label_plural = _(entities)

},
place_facet = {

type = authority,
table = ca_places,
relationship_table = ca_object_lots_x_places,
restrict_to_types = [],

(continues on next page)

1.18. Configuring Providence 163

CollectiveAccess Documentation, Release 1.8

(continued from previous page)

restrict_to_relationship_types = [],
sort_by = [name],
group_mode = alphabetical,

indefinite_article = a,
label_singular = _(place),
label_plural = _(places)

},
collection_facet = {

type = authority,
table = ca_collections,
relationship_table = ca_object_lots_x_collections,
restrict_to_types = [],
restrict_to_relationship_types = [],
sort_by = [name],
group_mode = alphabetical,

indefinite_article = a,
label_singular = _(collection),
label_plural = _(collections)

},
occurrence_facet = {

type = authority,
table = ca_occurrences,
relationship_table = ca_object_lots_x_occurrences,
restrict_to_types = [],
restrict_to_relationship_types = [],
sort_by = [name],
group_mode = alphabetical,

indefinite_article = an,
label_singular = _(occurrence),
label_plural = _(occurrences)

},
term_facet = {

type = authority,
table = ca_list_items,
relationship_table = ca_object_lots_x_vocabulary_terms,
restrict_to_types = [],
restrict_to_relationship_types = [],
sort_by = [name],
group_mode = alphabetical,

indefinite_article = a,
label_singular = _(term),
label_plural = _(terms)

},
type_facet = {

type = fieldList,
field = type_id,
sort_by = [name],
group_mode = alphabetical,

indefinite_article = a,
label_singular = _(type),
label_plural = _(types)

},
(continues on next page)

164 Chapter 1. Contents

CollectiveAccess Documentation, Release 1.8

(continued from previous page)

status_facet = {
type = fieldList,
field = status,
sort_by = [name],
group_mode = alphabetical,

indefinite_article = a,
label_singular = _(status),
label_plural = _(statuses)

},
access_facet = {

type = fieldList,
field = access,
sort_by = [name],
group_mode = alphabetical,

indefinite_article = an,
label_singular = _(access status),
label_plural = _(access statuses)

}
}

}
--
Configuration for entity browse
ca_entities = {

facets = {
place_facet = {

type = authority,
table = ca_places,
relationship_table = ca_entities_x_places,
restrict_to_types = [],
restrict_to_relationship_types = [],
sort_by = [name],
group_mode = alphabetical,

indefinite_article = a,
label_singular = _(place),
label_plural = _(places)

},
occurrence_facet = {

type = authority,
table = ca_occurrences,
relationship_table = ca_entities_x_occurrences,
restrict_to_types = [],
restrict_to_relationship_types = [],
sort_by = [name],
group_mode = alphabetical,

indefinite_article = an,
label_singular = _(occurrence),
label_plural = _(occurrences)

},
collection_facet = {

type = authority,
table = ca_collections,
relationship_table = ca_entities_x_collections,
restrict_to_types = [],

(continues on next page)

1.18. Configuring Providence 165

CollectiveAccess Documentation, Release 1.8

(continued from previous page)

restrict_to_relationship_types = [],
sort_by = [name],
group_mode = alphabetical,

indefinite_article = a,
label_singular = _(collection),
label_plural = _(collections)

},
term_facet = {

type = authority,
table = ca_list_items,
relationship_table = ca_entities_x_vocabulary_terms,
restrict_to_types = [],
restrict_to_relationship_types = [],
sort_by = [name],
group_mode = alphabetical,

indefinite_article = a,
label_singular = _(term),
label_plural = _(terms)

},
type_facet = {

type = fieldList,
field = type_id,
sort_by = [name],
group_mode = alphabetical,

indefinite_article = a,
label_singular = _(type),
label_plural = _(types)

},
status_facet = {

type = fieldList,
field = status,
sort_by = [name],
group_mode = alphabetical,

indefinite_article = a,
label_singular = _(status),
label_plural = _(statuses)

},
access_facet = {

type = fieldList,
field = access,
sort_by = [name],
group_mode = alphabetical,

indefinite_article = an,
label_singular = _(access status),
label_plural = _(access statuses)

}
}

}
--
Configuration for collection browse
ca_collections = {

facets = {
(continues on next page)

166 Chapter 1. Contents

CollectiveAccess Documentation, Release 1.8

(continued from previous page)

entity_facet = {
'type' can equal authority, attribute, fieldList,

→˓normalizedDates
type = authority,
table = ca_entities,
relationship_table = ca_entities_x_collections,
restrict_to_types = [],
restrict_to_relationship_types = [],
sort_by = [surname, forname],
group_mode = alphabetical,

indefinite_article = an,
label_singular = _(entity),
label_plural = _(entities)

},
place_facet = {

type = authority,
table = ca_places,
relationship_table = ca_places_x_collections,
restrict_to_types = [],
restrict_to_relationship_types = [],
sort_by = [name],
group_mode = alphabetical,

indefinite_article = a,
label_singular = _(place),
label_plural = _(places)

},
occurrence_facet = {

type = authority,
table = ca_occurrences,
relationship_table = ca_occurrences_x_collections,
restrict_to_types = [],
restrict_to_relationship_types = [],
sort_by = [name],
group_mode = alphabetical,

indefinite_article = an,
label_singular = _(occurrence),
label_plural = _(occurrences)

},
term_facet = {

type = authority,
table = ca_list_items,
relationship_table = ca_collections_x_vocabulary_terms,
restrict_to_types = [],
restrict_to_relationship_types = [],
sort_by = [name],
group_mode = alphabetical,

indefinite_article = a,
label_singular = _(term),
label_plural = _(terms)

},
type_facet = {

type = fieldList,
field = type_id,

(continues on next page)

1.18. Configuring Providence 167

CollectiveAccess Documentation, Release 1.8

(continued from previous page)

sort_by = [name],
group_mode = alphabetical,

indefinite_article = a,
label_singular = _(type),
label_plural = _(types)

},
status_facet = {

type = fieldList,
field = status,
sort_by = [name],
group_mode = alphabetical,

indefinite_article = a,
label_singular = _(status),
label_plural = _(statuses)

},
access_facet = {

type = fieldList,
field = access,
sort_by = [name],
group_mode = alphabetical,

indefinite_article = an,
label_singular = _(access status),
label_plural = _(access statuses)

}
}

}

--
Configuration for place browse
ca_places = {

facets = {
entity_facet = {

'type' can equal authority, attribute, fieldList,
→˓normalizedDates

type = authority,
table = ca_entities,
relationship_table = ca_entities_x_places,
restrict_to_types = [],
restrict_to_relationship_types = [],
sort_by = [surname, forname],
group_mode = alphabetical,

indefinite_article = an,
label_singular = _(entity),
label_plural = _(entities)

},
object_facet = {

type = authority,
table = ca_objects,
relationship_table = ca_objects_x_places,
restrict_to_types = [],
restrict_to_relationship_types = [],
sort_by = [name],
group_mode = alphabetical,

(continues on next page)

168 Chapter 1. Contents

CollectiveAccess Documentation, Release 1.8

(continued from previous page)

indefinite_article = a,
label_singular = _(object),
label_plural = _(objects)

},
occurrence_facet = {

type = authority,
table = ca_occurrences,
relationship_table = ca_places_x_occurrences,
restrict_to_types = [],
restrict_to_relationship_types = [],
sort_by = [name],
group_mode = alphabetical,

indefinite_article = an,
label_singular = _(occurrence),
label_plural = _(occurrences)

},
term_facet = {

type = authority,
table = ca_list_items,
relationship_table = ca_places_x_vocabulary_terms,
restrict_to_types = [],
restrict_to_relationship_types = [],
sort_by = [name],
group_mode = alphabetical,

indefinite_article = a,
label_singular = _(term),
label_plural = _(terms)

},
type_facet = {

type = fieldList,
field = type_id,
sort_by = [name],
group_mode = alphabetical,

indefinite_article = a,
label_singular = _(type),
label_plural = _(types)

},
status_facet = {

type = fieldList,
field = status,
sort_by = [name],
group_mode = alphabetical,

indefinite_article = a,
label_singular = _(status),
label_plural = _(statuses)

},
access_facet = {

type = fieldList,
field = access,
sort_by = [name],
group_mode = alphabetical,

(continues on next page)

1.18. Configuring Providence 169

CollectiveAccess Documentation, Release 1.8

(continued from previous page)

indefinite_article = an,
label_singular = _(access status),
label_plural = _(access statuses)

}
}

}
--
Configuration for occurrence browse
ca_occurrences = {

facets = {
entity_facet = {

'type' can equal authority, attribute, fieldList,
→˓normalizedDates

type = authority,
table = ca_entities,
type_restrictions = [exhibitions], # if browse for

→˓occurrences is type-restricted then only display this facet when browsing for
→˓exhibitions

relationship_table = ca_entities_x_occurrences,
restrict_to_types = [],
restrict_to_relationship_types = [],
sort_by = [surname, forname],
group_mode = alphabetical,

indefinite_article = an,
label_singular = _(entity),
label_plural = _(entities)

},
object_facet = {

type = authority,
table = ca_objects,
relationship_table = ca_objects_x_occurrences,
restrict_to_types = [],
restrict_to_relationship_types = [],
sort_by = [name],
group_mode = alphabetical,

indefinite_article = a,
label_singular = _(object),
label_plural = _(objects)

},
term_facet = {

type = authority,
table = ca_list_items,
relationship_table = ca_occurrences_x_vocabulary_terms,
restrict_to_types = [],
restrict_to_relationship_types = [],
sort_by = [name],
group_mode = alphabetical,

indefinite_article = a,
label_singular = _(term),
label_plural = _(terms)

},
type_facet = {

type = fieldList,
(continues on next page)

170 Chapter 1. Contents

CollectiveAccess Documentation, Release 1.8

(continued from previous page)

field = type_id,
sort_by = [name],
group_mode = alphabetical,

indefinite_article = a,
label_singular = _(type),
label_plural = _(types)

},
status_facet = {

type = fieldList,
field = status,
sort_by = [name],
group_mode = alphabetical,

indefinite_article = a,
label_singular = _(status),
label_plural = _(statuses)

},
access_facet = {

type = fieldList,
field = access,
sort_by = [name],
group_mode = alphabetical,

indefinite_article = an,
label_singular = _(access status),
label_plural = _(access statuses)

}
}

}

--
Configuration for storage location browse
ca_storage_locations = {

facets = {
type_facet = {

type = fieldList,
field = type_id,
sort_by = [name],
group_mode = alphabetical,

indefinite_article = a,
label_singular = _(type),
label_plural = _(types)

},
status_facet = {

type = fieldList,
field = status,
sort_by = [name],
group_mode = alphabetical,

indefinite_article = a,
label_singular = _(status),
label_plural = _(statuses)

}
}

}

1.18. Configuring Providence 171

CollectiveAccess Documentation, Release 1.8

1.18.3 Global.conf

The global.conf file is a special configuration file that can be used to define values for substitution into other con-
figuration files. It provides a central location to define sets of values shared across multiple configuration files. All
configuration files in the same directory share a common global.conf file.

When a configuration file is loaded, CA looks first for a file named global.conf in the same directory as the requested
file. If it finds one, it loads global.conf before any other file. This means that any values defined in global.conf are
available for substitution in all configuration files located in the same directory. It also means that any value, scalar or
not, in global.conf is available to CA in all configuration files.

1.18.4 Media_processing.conf

The file defines the media processing rules to transform media representations to different media transformations.

It is a standard CollectiveAccess configuration file using the common configuration syntax.

CollectiveAccess supports media processing configuration for representations of the following items:

• representations (ca_object_representations, ca_object_representation_multifiles)

• attribute values (ca_attribute_value_multifiles)

• icons (ca_icons)

• user comments media (ca_item_comments_media)

• representation annotation previews (ca_representation_annotation_previews)

You may specify accepted media types, and different versions for the transformations, using rules.

172 Chapter 1. Contents

CollectiveAccess Documentation, Release 1.8

Common configuration

Top level key Description Default
use_external_url_when_available If you want original media fetched

from URLs to NOT be stored
in CA, but rather for CA to
directly reference the media via
the URL used to fetch it set
use_external_url_when_available to
1. If you have no idea what this
means then leave this set to zero.

0

queue_threshold_in_bytes Filesize (in bytes) above which me-
dia should be queued for back-
ground processing Files smaller
than the threshold will be processed
at the time of upload, so you should
set this to a small enough value that
your server has a shot at process-
ing the media in near-realtime. A
safe bet is 500,000 bytes (eg. 0.5
megabytes), but you may need to go
lower (or higher).
Note that you can override this set-
ting for specific media types and
versions below if you wish. Also
keep in mind a few other fun facts:

1. If the queue_enabled setting
in global.conf is set to zero
then no background process-
ing will take place, no matter
what you set here.

2. The default setting for
queue_enabled is zero, so
make sure you change it
if you want background
processing to happen.

3. Versions that have no
QUEUE_WHEN_FILE_LARGER_THAN
are never queued for
background process-
ing; versions with a
QUEUE_WHEN_FILE_LARGER_THAN
settings of zero are similarly
never queued (absence and
zero are one and the same,
config-wise).

4. Some types of media
are setup by default to
never queue no matter the
“queue_threshold_in_bytes”
and “queue_enabled” set-
tings. This includes media
types for much little or no
processing is done, including
SWF, XML and MSWord.

1000

1.18. Configuring Providence 173

CollectiveAccess Documentation, Release 1.8

Organization

At the top level, media_processing.conf is structured as a series of blocks, one for each type of item to be processed:

• representations (ca_object_representations, ca_object_representation_multifiles)

• attribute values (ca_attribute_value_multifiles)

• icons (ca_icons)

• user comments media (ca_item_comments_media)

• representation annotation previews (ca_representation_annotation_previews)

For each table, there is an associative array, with the following keys:

• MEDIA_ACCEPT: Relates mimetypes and media types. Each type of media (Ex. image) may have multiple
mimetypes associated with it.

• MEDIA_TYPES: Describes queueing and available representation versions in different sizes and flavours.

• MEDIA_TRANSFORMATION_RULES: Describes the rules to apply to transform a representation file.

This is an example of a media processing file:

ca_object_representations = {
MEDIA_METADATA = "media_metadata",
MEDIA_CONTENT = "media_content",

MEDIA_ACCEPT = {
image/jpeg = image,
image/gif = image,
image/png = image,
image/tiff = image,
image/x-bmp = image,
image/x-dcraw = image,
image/x-psd = image,
image/x-exr = image,
image/jp2 = image,

application/octet-stream = binaryfile
},

MEDIA_TYPES = {

image = {
QUEUE = mediaproc,
QUEUED_MESSAGE = _("Image is being processed"),
QUEUE_USING_VERSION = original,
VERSIONS = {

thumbnail = {
RULE = rule_thumbnail_image, VOLUME = images,
QUEUE_WHEN_FILE_LARGER_THAN = <queue_threshold_in_bytes>

},
preview = {

RULE = rule_preview_image, VOLUME = images,
QUEUE_WHEN_FILE_LARGER_THAN = <queue_threshold_in_bytes>

},
original = {

RULE = rule_original_image, VOLUME = images,
USE_EXTERNAL_URL_WHEN_AVAILABLE = <use_external_url_when_available>

},

(continues on next page)

174 Chapter 1. Contents

CollectiveAccess Documentation, Release 1.8

(continued from previous page)

tilepic = {
RULE = rule_tilepic_image, VOLUME = tilepics,
QUEUE_WHEN_FILE_LARGER_THAN = <queue_threshold_in_bytes>

}
},
MEDIA_VIEW_DEFAULT_VERSION = tilepic,
MEDIA_PREVIEW_DEFAULT_VERSION = small

},
binaryfile = {

QUEUE = mediaproc,
QUEUED_MESSAGE = _("Image is being processed"),
QUEUE_USING_VERSION = original,
VERSIONS = {

thumbnail = {
RULE = rule_thumbnail_image, VOLUME = images, BASIS = large,
QUEUE_WHEN_FILE_LARGER_THAN = <queue_threshold_in_bytes>

},
preview = {

RULE = rule_preview_image, VOLUME = images, BASIS = large,
QUEUE_WHEN_FILE_LARGER_THAN = <queue_threshold_in_bytes>

},
original = {

RULE = rule_original_image, VOLUME = images,
USE_EXTERNAL_URL_WHEN_AVAILABLE = <use_external_url_when_available>

}
},
MEDIA_VIEW_DEFAULT_VERSION = large,
MEDIA_PREVIEW_DEFAULT_VERSION = small

}
},
MEDIA_TRANSFORMATION_RULES = {

Image rules

rule_thumbnail_image = {

SCALE = {
width = 120, height = 120, mode = bounding_box, antialiasing = 0

},
SET = {quality = 75, format = image/jpeg}

},
rule_preview_image = {

SCALE = {
width = 180, height = 180, mode = bounding_box, antialiasing = 0

},
SET = {quality = 75, format = image/jpeg}

},
rule_original_image = {},
rule_tilepic_image = {

SET = {quality = 40, tile_mimetype = image/jpeg, format = image/tilepic}
}

}
}

1.18. Configuring Providence 175

CollectiveAccess Documentation, Release 1.8

MEDIA_ACCEPT

One entry per mimetype. Each type of media (Ex. image) may have multiple mimetypes associated with it.

mimetype = media_type

MEDIA_TYPES

Each key is a media type descriptor, containing an associative array with queueing and representation version descrip-
tions.

176 Chapter 1. Contents

CollectiveAccess Documentation, Release 1.8

Key Description Example
QUEUE Queue to deliver the media type to.

Only mediaproc is supported cur-
rently.

QUEUE = mediaproc

QUEUED_MESSAGE Message to show on queue listing QUEUED_MESSAGE =
_('Image is being
processed')

QUEUE_USING_VERSION Version to use when queueing. Note
here that you have to specify a ver-
sion here that is not set to QUEUE,
and that you’d almost always want
to be using original (a.k.a. the
uploaded file).

QUEUE_USING_VERSION =
original

MEDIA_VIEW_DEFAULT_VERSIONName of the media version that
should be used as the default for dis-
play for the specified mimetype.

• This is only a suggestion -
it’s the version to display in
the absence of any overriding
value provided by the user.

MEDIA_VIEW_DEFAULT_VERSION
= tilepic

MEDIA_PREVIEW_DEFAULT_VERSIONDefault version to display as a pre-
view for the given field based upon
the currently loaded row

MEDIA_PREVIEW_DEFAULT_VERSION
= small

VERSIONS Versions describe different repre-
sentation versions. See VERSIONS
for further details

VERSIONS = {
thumbnail = {

RULE = rule_
→˓thumbnail_image,

VOLUME = images,
QUEUE_WHEN_FILE_

→˓LARGER_THAN = 1000000
},
preview = {

RULE = rule_preview_
→˓image,

VOLUME = images,
QUEUE_WHEN_FILE_

→˓LARGER_THAN = 1000000
},
original = {

RULE = rule_
→˓original_image,

VOLUME = images,
QUEUE_WHEN_FILE_

→˓LARGER_THAN = 1000000
},
tilepic = {

RULE = rule_tilepic_
→˓image,

VOLUME = tilepics,
QUEUE_WHEN_FILE_

→˓LARGER_THAN = 1000000
}

}

1.18. Configuring Providence 177

CollectiveAccess Documentation, Release 1.8

VERSIONS

Each key is a version descriptor, containing an associative array, with a pointer to media transformation rules that help
building a new derivative version of a media file.

178 Chapter 1. Contents

CollectiveAccess Documentation, Release 1.8

Key Description Example
RULE Rule name RULE =

rule_thumbnail_image
VOLUME A volume label from Me-

dia_volumes.conf file. Files
will be stored in/retrieved from this
volume.

VOLUME = images

QUEUE_WHEN_FILE_LARGER_THANFilesize (in bytes) above which me-
dia should be queued for back-
ground processing. Files smaller
than the threshold will be processed
at the time of upload, so you should
set this to a small enough value that
your server has a shot at process-
ing the media in near-realtime. A
safe bet is 500,000 bytes (eg. 0.5
megabytes), but you may need to go
lower (or higher).
Note that you can override this set-
ting for specific media types and
versions below if you wish. Also
keep in mind a few other fun facts:

1. If the queue_enabled setting
in global.conf is set to zero
then no background process-
ing will take place, no matter
what you set here.

2. The default setting for
queue_enabled is zero, so
make sure you change it
if you want background
processing to happen.

3. Versions that have no
QUEUE_WHEN_FILE_LARGER_THAN
are never queued for
background process-
ing; versions with a
QUEUE_WHEN_FILE_LARGER_THAN
settings of zero are similarly
never queued (absence and
zero are one and the same,
config-wise).

4. Some types of media
are setup by default to
never queue no matter the
“queue_threshold_in_bytes”
and “queue_enabled” set-
tings. This includes media
types for much little or no
processing is done, including
SWF, XML and MSWord.

QUEUE_WHEN_FILE_LARGER_THAN
= 1000

1.18. Configuring Providence 179

CollectiveAccess Documentation, Release 1.8

MEDIA_TRANSFORMATION_RULES

Rules that describe how to build a derivative version of a media file. There are operations on the image and also filters.

It is an associative array of operation keys.

Here it is a listing of available operations:

180 Chapter 1. Contents

CollectiveAccess Documentation, Release 1.8

Operation Description Example
ANNOTATE Add annotations to a media file.

Note that annotation requires an al-
pha channel. If none is available, an
all opaque alpha channel is implicit-
edly created. Not available for GD
image plugin.
Parameters are:

• position: a list of values from
north, north_west,
north_east,
south, south_east,
south_west, center.

• text: the annotation text. You
should escape single quote
chars in the text.

• inset: position of text inside
the frame.

• font: set the font of the text.
Available fonts vary from sys-
tem to system.

• size: Point size for the font.
• color: color for the back-

ground. accepts a color name,
a hex color, or a numerical
RGB, RGBA, HSL, HSLA,
CMYK, or CMYKA specifi-
cation, for example, blue,
#ddddff, rgb(255,255,
255).

ANNOTATE {
position = south_east,
text = "Annotation",
inset = 10,
font = Arial,
size = 16,
color = blue

}

CROP Crop the file. Params:
• width: target width of the

file.
• height: target height of the

file.
• x: horizontal offset.
• y: vertical offset.

CROP {
width = 100,
height = 100,
x = 10,
y = 10

}

FLIP Reflect the scanlines in the verti-
cal or horizontal direction. The
image will be mirrored upside-
down or left-right. Set direction to
vertical or horizontal

FLIP { direction =
→˓vertical }

ROTATE Rotate the file. Parameters:
• angle: angle in degrees. ROTATE { angle = 30 }

SCALE Scale the file. Configure the follow-
ing params:

• antialiasing: boolean to
activate anti-aliasing.

• width: new width of the
file. It is optional, but one of
height or width must be pro-
vided.

• height: new height of the
file. It is optional, but one of
height or width must be pro-
vided.

• mode: Scaling mode
– width: Scale propor-

tionally to width.
– height: Scale propor-

tionally to height.
– bounding_box:

Scale proportionally
and keep largest dimen-
sion inside the bounding
box.

– fill_box: Scale pro-
portionally and stretch
shortest dimension to
fill all the box.

• crop_from: it is a position
field, which is only used in
fill_box mode. Not available
for GMagick.

• trim_edges: remove
edges, it allows a percentage
value. Not available for
GMagick.

Limit higher dimension
→˓to 240px
SCALE = {

width = 240,
height = 240,
mode = bounding_box,
antialiasing = 0

}

200px Square thumbnails
SCALE = {

width = 200,
height = 200,
mode = fill_box,
crop_from = center,
antialiasing = 0

}

SET Set properties on the media process-
ing handler. Available values are:

• antialiasing
• colorspace
• gamma
• height
• layer_ratio
• layers
• mimetype
• no_upsampling
• output_layer
• quality
• reference-black
• reference-white
• tile_height
• tile_mimetype
• tile_width
• tiles
• typename
• version
• width

SET = {
quality = 75,
format = image/jpeg

}

WATERMARK
Add a watermark to a media file. Pa-
rameters are:

• image: Absolute path to
your watermark image. Note
that this MUST be the abso-
lute path to the watermark
image. If you put it in your
‘app’ directory you can use
preexisting macros set in
global.conf, such as
<ca_app_dir>, to avoid
hardcoding in path info. Eg.
if you have the watermark
image at /web/ca/app/
watermarks/mymark.
png you can configure it
here as <ca_app_dir>/
watermarks/mymark.
png. There is no default
value.

• width: Width of watermark
in pixels. Default value is
50% of the width of the image
being processed.

• height: Height of water-
mark in pixels. Default value
is 50% of the height of the im-
age being processed

• position: Location of
watermark on processed
image; allowable values will
place the watermark on the
corners (eg. north_west
is the upper-left-hand cor-
ner), the center on top or
bottom (north or south)
or in the center of the image
(center). Available values
are north, north_west,
north_east,
south, south_east,
south_west, center.

• opacity: Determines trans-
parency of watermark image.
Use a value between 0 and
1. 0=completely transparent;
1.0=completely opaque. De-
fault value is 0.5

WATERMARK = {
image = <ca_app_dir>/

→˓watermark.png,
width = 72,
height = 85,
position = south_east,
opacity = 0.4

},

1.18. Configuring Providence 181

CollectiveAccess Documentation, Release 1.8

Here it is a listing of available filters.

182 Chapter 1. Contents

CollectiveAccess Documentation, Release 1.8

Filter Description Example
DESPECKLE Reduce the speckles within an im-

age. No parameters. DESPECKLE { }

MEDIAN Apply a median filter to the image,
of the given radius. MEDIAN { radius = 2 }

SHARPEN Use a Gaussian operator of the
given radius and standard deviation
(sigma). For reasonable results, ra-
dius should be larger than sigma.
Use a radius of 0 to have the method
select a suitable radius.
The parameters are:

• radius: The radius of the
Gaussian, in pixels, not
counting the center pixel
(default 0).

• sigma: The standard devia-
tion of the Gaussian, in pix-
els (default 1.0). It can be any
floating point value from 0.1,
for practically no sharpening,
to

3 or more for sever sharpening. 0.5
to 1.0 is rather good.
The larger the sigma the more it
sharpens.

• sharpen 0x.4: very small
• sharpen 0x1.0: about

one pixel size sharpen
• sharpen 0x3.0: proba-

bly getting too large

SHARPEN {
radius = 0,
sigma = 0.63

}

UNSHARPEN_MASK This filter sharpens an image. The
image is convolved with a Gaus-
sian operator of the given radius
and standard deviation (sigma). For
reasonable results, radius should be
larger than sigma. Use a radius of 0
to have the method select a suitable
radius.
The parameters are:

• radius: The radius of the
Gaussian, in pixels, not
counting the center pixel
(default 0).

• sigma: The standard devia-
tion of the Gaussian, in pixels
(default 1.0).

• amount: The fraction of the
difference between the origi-
nal and the blur image that is
added back into the original
(default 1.0).

• threshold: The threshold, as
a fraction of QuantumRange,
needed to apply the difference
amount (default 0.05).

UNSHARPEN_MASK {
radius = 0,
sigma = 0.45,
amount = 1.5,
threshold = 0

}

1.18. Configuring Providence 183

CollectiveAccess Documentation, Release 1.8

1.18.5 Multipart numbering

The MultiPartIDNumber plug-in provides a flexible means to generate structured numbering systems such as accession
numbers within CollectiveAccess. For most numbering schemes employed by museums and archives it should be
possible to configure a convenient user interface and adequate validation rules using only the plug-in and without any
custom programming.

The MultiPartIDNumber plug-in requires an ID number format for each item in CollectiveAccess that supports ID
numbers. A format is composed of elements joined together by a separator. Each element in a format has settings
specified that determine what input is valid for it and how it will behave in the user interface. An ID number is
constructed by stringing together the individual elements using separators. By combining various types of elements
you can create arbitrarily complex numbering systems.

The multipart_id_numbering.conf configuration file

The file defines the formats used by the MultiPartIDNumber plug-in. It is a standard CollectiveAccess configuration
file using the common configuration syntax.

CollectiveAccess supports ID numbers for the following items:

• objects (ca_objects)

• lots (ca_object_lots)

• entities (ca_entities)

• places (ca_places)

• collections (ca_collections)

• occurrences (ca_occurrences)

• loans (ca_loans)

• movements (ca_movements)

• storage locations (ca_storage_locations)

• representations (ca_object_representations)

• list items (ca_list_items)

• content managed site pages (ca_site_pages)

• tours (ca_tours)

• tour stops (ca_tour_stops)

You may specify numbering formats for any type of item listed above in multipart_id_numbering.conf. The format
name for each must be identical to the item code (italicized in the list above). CollectiveAccess will use the format to
generate an ID number entry interface and validate input for the ID number field of the respective data item. For lots
this is the ‘idno_stub’ field; for objects and other items it is the ‘idno’ field.

The following sample multipart_id_numbering.conf configuration is for an organization employing a lot numbering
scheme based upon the year of acquisition and an automatically assigned incrementing lot number. Object numbers
are based upon the lot number format but with an additional automatically assigned incrementing item number. In both
number formats, elements are separated with periods (“.”). The file specifies a two part number for entities: the first
element is a code taken from a drop-down list of three allowable values and the second element is an automatically
assigned incrementing number. For both place names and vocabulary terms an automatically assigned incrementing
number is specified.

184 Chapter 1. Contents

CollectiveAccess Documentation, Release 1.8

formats = {
ca_objects = {
This is a default numbering format for object type for which a format
has not been explicitly specified

__default__ = {
separator = .,
sorting of id numbers will be in reverse of display order
(eg. if display is 2011.52.1, sort will be on 1.52.2001);
remove sort_order altogether if you want sort to consider
elements in display order

sort_order = [item_num, lot_num, acc_year],

elements = {
acc_year = {

type = YEAR,
width = 6,
description = Year,

editable = 1
},
lot_num = {

type = NUMERIC,
width = 6,
description = Lot number,

editable = 1
},
item_num = {

type = SERIAL,
width = 6,
description = Item number,

editable = 1
}

}
},
Here's a specialized number format for objects of type "video"
(where "video" is the idno of the object_type)
video = {

separator = .,

elements = {
acc_year = {

type = YEAR,
width = 6,
description = Year,

editable = 1
},
typecode = {

type = LIST,
values = [8MM, DV, BETASP],
default = ORG,
width = 6,
description = Type code,
editable = 1

(continues on next page)

1.18. Configuring Providence 185

CollectiveAccess Documentation, Release 1.8

(continued from previous page)

},
item_num = {

type = SERIAL,
width = 6,
description = Item number,

editable = 1
}

}
}

},

ca_object_lots = {
__default__ = {

separator = .,

elements = {
acc_year = {

type = YEAR,
width = 6,
description = Year,

editable = 1
},
lot_num = {

type = SERIAL,
width = 6,
description = Lot number,

editable = 1
}

}
}

},

ca_entities = {
__default__ = {

separator = .,

elements = {
code = {

type = LIST,
values = [PER, ORG, GRP],
default = ORG,
width = 6,
description = Entity code,
editable = 1

},
num = {

type = SERIAL,
width = 8,
description = Entity number,
editable = 1

}
}

}
},

(continues on next page)

186 Chapter 1. Contents

CollectiveAccess Documentation, Release 1.8

(continued from previous page)

ca_places = {
__default__ = {

Note the blank separator -- the comma is part of the config
file, not the separator value
separator = ,

elements = {
num = {

type = SERIAL,
width = 8,
description = Place number,
editable = 0

}
}

}
},

ca_collections = {
__default__ = {

Note the blank separator -- the comma is part of the config
file, not the separator value
separator = ,

elements = {
num = {

type = SERIAL,
width = 8,
description = Collection number,
editable = 0

}
}

}
},

ca_occurrences = {
__default__ = {

Note the blank separator -- the comma is part of the config
file, not the separator value
separator = ,

elements = {
num = {

type = SERIAL,
width = 8,
description = ID number,
editable = 0

}
}

}
}

}

All formats in the configuration file are located in an associative list named formats The keys of this list are table
names for which format are specified. Each table name key has as its value an associative list keyed on type. Use the
special __default__ type to specify a format for use with any type not declared with a specific format.

Each type key has as its value an associative list specifying the format. The following keys may be placed in the list:

1.18. Configuring Providence 187

CollectiveAccess Documentation, Release 1.8

Key Description Example value Mandatory?
separator The value to be displayed between elements in the

user interface for the format. If you want your el-
ements to be merged end to end with no space or
separator character(s) then leave this blank.

separator =
,

Yes

dont_inherit_from_parent_collectionIn some archival configurations of CollectiveAc-
cess a cross-table hierarchy is used to link object-
level records to the collections they are a part of.
By default these child records inherit their parent
id number. This is often desired behavior. Other
times, for example when a SERIAL configuration
is set for object idnos, it’s not and has potential
to create duplicate id numbers. In these cases
dont_inherit_from_parent_collection can be used to
prevent object children from inheriting collection id-
nos that are duplicative. Note this only impacts
cross-table hierarchies (doesn’t impact other rela-
tionships or hierarchies within a single table).

dont_inherit_from_parent_collection
= 1

No

elements An associative list of elements and the parameters
for each. Elements will be output when construct-
ing an ID number or user interface in the same order
they appear in the list. At least one element must be
declared for the format to be valid.

elements = {
code = {

type
→˓= LIST,

→˓values =
→˓[PER, ORG,
→˓GRP],

→˓default =
→˓ORG,

width
→˓= 6,

→˓description
→˓= Entity
→˓code,

→˓editable =
→˓1

},
num = {

type
→˓= SERIAL,

width
→˓= 8,

→˓description
→˓= Entity
→˓number,

→˓editable =
→˓1

}
}

Yes

sort_order By default an ID number will sort on its constituent
elements in the order they are defined in the ele-
ments list. If you need to have the elements of an
ID number display in one order but sort in another,
you can set the order used for sorting here. The value
should be a simple non-associative list with the ele-
ment keys in the order to use for sorting. If you want
sorting to use the same order as display, you should
simply omit sort_order

sort_order
= [num,
code]

No

allow_extra_elementsAn existing ID number value may include more
elements than are currently configured. This can
happen when configuration is changed, invalidat-
ing numbers created under earlier configurations, or
if values are imported from other data sources that
don’t conform to current standards. For these num-
bers CollectiveAccess can either (a) ignore the addi-
tional parts, truncating the number at the configured
number of parts or (b) add “extra” elements for these
numbers, preserving the additional parts. No matter
which option is chosen a number with extra parts
is still considered invalid. To tolerate numbers with
extra parts set this option to a non-zero value. To
truncate set this option to 0. If omitted the default
is to allow extra elements. (Available from version
1.6)

allow_extra_elements
= 1

No

extra_element_widthWidth of any “extra” elements in editing forms, in
characters. Defaults to 10 if not set. (Available from
version 1.6)

extra_element_width
= 4

No

188 Chapter 1. Contents

CollectiveAccess Documentation, Release 1.8

The keys of the element associative list are element names. These names are only used for reference during config-
uration and to name HTML form elements and are not presented to the user. They should use only alphanumeric
characters and underscores. Do not include spaces or punctuation in the names.

The value for each element name in the elements list is another associative list, this one containing a list of settings
declaring the characteristics of the element. The most important setting to set for an element is its type which defines
the general range of allowable values and user interface behaviors. The plug-in supports the following types:

Type Description
LIST Element value must be taken from a predefined list. User interface is drop-down

list containing allowable values.
SERIAL If element value is not set, it will be set to a value one greater than the greatest

existing value of the ID number as formed from the element and all preceeding
elements in the format. For example, if for the three element format with last last
element set to SERIAL 2006 001 001 exists and you enter 2006 4, the last element
will be set to 5. It is also possible to set the element value manually, but only letters
and numbers are allowed.

CONSTANT Element is always set to a constant alphanumeric value and cannot be changed.
FREE Any input is allowed up to a specified length.
NUMERIC Only numbers are allowed.
ALPHANUMERIC Only numbers and letters are allowed.
YEAR Only valid four digit years are allowed.If empty the element will default to the

current year. This is useful when your numbering system includes the current year.
MONTH Only valid month numbers (between 1 and 12) are allowed. If empty the element

will default to the current month.
DAY Only valid day numbers (between 1 and 31) are allowed. If empty the element will

default to the current day.
PARENT Automatically set to the identifier value for the parent when a new record is created.

This type of element is useful when implementing “agglutinative” numbering sys-
tems which each level in a hierarchy incorporates the number of its parent. When
used this must be the first element in the element list for a format type. Unexpected
behaviors may occur if placed in other locations in the element list.

Beyond type, there are a number of other settings that can be set for an element. Some are common to all element
types and others are specific to certain types.

Settings applicable to all types of elements are:

Parameter Description
description A short description of the element, suitable for display in error messages. You must

set this for each element.
editable If set to a non-zero value element is presented in the user interface as editable

(except for elements of type CONSTANT which are never editable). If omitted
or set to zero elements are only editable when empty in the case of user-entered
element types (LIST, FREE, NUMERIC, ALPHANUMERIC) and never editable
in auto-filled element types (SERIAL, CONSTANT, YEAR, MONTH and DAY)

width Display width, in characters, of entry field in user interface.

Type-specific settings are:

1.18. Configuring Providence 189

CollectiveAccess Documentation, Release 1.8

Type Parameter Description
LIST values List of allowable values for the element. Used to validate input

and generate a drop-down list in the user interface. Note that the
value for this parameter is a simple list, not an associative list.
Ex. values = [eins, zwei, drei, vier]

default Default value for element
SERIAL child_only Set to restrict element for use only on records with a parent.

zeropad_to_length If set to a non-zero value, the sequence number is left-padded
with zeros until its length is equal to the value. For example, if
set to 4, the sequence number 17 would be output as 0017. The
zero padding length does not affect sequence numbers longer
in length than the specified value. Thus, for example, if ze-
ropad_to_length is set to 3, the sequence value 7114 would be
output as-is.

sequence_by_type If set to a non-zero value sequences are calculated by type. That
is, each individual record type within the table gets its own num-
ber sequence. By default the numbering sequence is shared
amongst all types. For most primary types (objects for exam-
ple) you’ll generally want a single set of numbers for all types.
Sometimes, most commonly for occurrences, you may prefer
that each type have its own sequence. (available from v1.5)

minimum_value A non-zero number to use as the initial value for the sequence.
Ex. if set to 20000 then the first record created with be numbered
20000, the second 20001 and so on. (available from v1.7)

CONSTANT value Value of constant. This must be specified.
FREE minimum_length Minimum allowable length, in characters, of element value.

maximum_length Maximum allowable length, in characters, of element value.
zeropad_to_length If set to a non-zero value, the sequence number is left-padded

with zeros until its length is equal to the value. For example, if
set to 4, the sequence number 17 would be output as 0017. The
zero padding length does not affect sequence numbers longer
in length than the specified value. Thus, for example, if ze-
ropad_to_length is set to 3, the sequence value 7114 would be
output as-is.

NUMERIC minimum_length Minimum allowable length, in characters, of element value.
maximum_length Maximum allowable length, in characters, of element value.
minimum_value Minimum allowable numeric value of element value.
maximum_value Maximum allowable numeric value of element value.

ALPHANUMERIC minimum_length Minimum allowable length, in characters, of element value.
maximum_length Maximum allowable length, in characters, of element value.

YEAR force_derived_values_to_current_yearWhen deriving an identifier from an existing value (typically
when duplicating a record, or creating a child record), force the
new value to the current year no matter the existing value.

MONTH force_derived_values_to_current_monthWhen deriving an identifier from an existing value (typically
when duplicating a record, or creating a child record), force the
new value to the current month no matter the existing value.

DAY force_derived_values_to_current_dayWhen deriving an identifier from an existing value (typically
when duplicating a record, or creating a child record), force the
new value to the current day no matter the existing value.

190 Chapter 1. Contents

CollectiveAccess Documentation, Release 1.8

Problems with SERIAL elements

To generate unique values for SERIAL elements the plug-in must query your CollectiveAccess database. If the
database operation fails you may see the word ‘ERR’ instead of the expected numeric value. In versions prior to
1.7.9 the underlying database table and fields used to derive the next number in sequence had to be manually config-
ured for each SERIAL element using the table, field and sort_field settings. If you are running an older version and
receive an ERR value verify that the table, field and sort_field element settings are set correctly.

The automatically issued SERIAL values should always be one more than the largest extant value in your database. If
you are getting values that are less than the maximum try reloading sort values, using the option under the adminis-
trative Maintenance menu or the command line caUtils command using the rebuild-sort-values option.

1.18.6 Search_indexing.conf

The search_indexing.conf file controls which data in your CollectiveAccess database is searchable, and how. Only
data elements configured in search_indexing.conf are searchable. Note that configuration of CollectiveAccess’ browse
system is completely independent from search. It is possible to search on data that are not browse-able, and browse on
elements that are not indexed for search.

Organization

At the top level, search_indexing.conf is structured as a series of blocks, one for each type of item to be indexed:

ca_objects = {
... indexing configuration for ca_objects records ...

},
ca_entities = {

... indexing configuration for ca_entities records ...
},
ca_places = {

... indexing configuration for ca_places records ...
},
ca_occurrences = {

... indexing configuration for ca_occurrences records ...
},
...

Within each block is a sub-block for item fields as well as sub-blocks for related items and access points (aliases and
short cuts for selected data elements or groups of elements). Content in related items may be indexed against the item.
For example, you may have an object record indexed by its various fields (accession number, condition, appraised
value) as well as by content in related entities (name of artist, nationality of artist), places (place of manufacture),
storage location, and more. The object will be searchable by any of the fields for which it has been indexed. Indexing
for each type of item is configured independently. You may have objects indexed with content taken from related
entities, while omitting related object data from entity indexing, for instance.

A typical ca_objects block might look like this:

ca_objects = {

ca_objects = {

fields = {
_metadata = { }, #

→˓forces indexing of all attributes
parent_id = {STORE, DONT_TOKENIZE, DONT_INCLUDE_IN_SEARCH_

→˓FORM },

(continues on next page)

1.18. Configuring Providence 191

CollectiveAccess Documentation, Release 1.8

(continued from previous page)

source_id = {},
lot_id = {},
idno = { STORE, DONT_TOKENIZE, INDEX_AS_IDNO, BOOST = 100 },
type_id = { STORE, DONT_TOKENIZE },
source_id = { STORE, DONT_TOKENIZE },
hier_object_id = { STORE, DONT_TOKENIZE },
access = { STORE, DONT_TOKENIZE },
status = { STORE, DONT_TOKENIZE },
deleted = { STORE, DONT_TOKENIZE },
is_deaccessioned = { STORE, DONT_TOKENIZE },
deaccession_notes = {},
deaccession_date = {},
circulation_status_id = { STORE, DONT_TOKENIZE }

},
Index idno's of related objects
related = {

fields = {
idno = { STORE, DONT_TOKENIZE, INDEX_AS_IDNO, BOOST =

→˓100 }
}

}
},

ca_object_labels = {

key = object_id,
fields = {

name = { BOOST = 100, INDEX_ANCESTORS, INDEX_ANCESTORS_START_
→˓AT_LEVEL = 0, INDEX_ANCESTORS_MAX_NUMBER_OF_LEVELS = 4, INDEX_ANCESTORS_AS_PATH_
→˓WITH_DELIMITER = . },

name_sort = { DONT_INCLUDE_IN_SEARCH_FORM },
_count = {}

},
Index names of related objects
related = {

fields = {
name = { BOOST = 100, INDEX_ANCESTORS, INDEX_

→˓ANCESTORS_START_AT_LEVEL = 0, INDEX_ANCESTORS_MAX_NUMBER_OF_LEVELS = 4, INDEX_
→˓ANCESTORS_AS_PATH_WITH_DELIMITER = . }

}
}

},

ca_objects_x_entities = {
key = object_id,
fields = {

_count = { }
}

},

ca_entities = {

tables = {
entities = [ca_objects_x_entities]

},
fields = {

idno = { STORE, DONT_TOKENIZE, INDEX_AS_IDNO, BOOST = 100 },
_count = { }

}
(continues on next page)

192 Chapter 1. Contents

CollectiveAccess Documentation, Release 1.8

(continued from previous page)

},

ca_entity_labels = {

tables = {
entities = {

ca_objects_x_entities = { },
ca_entities = {}

},
annotations = [ca_objects_x_object_representations, ca_object_

→˓representations, ca_representation_annotations, ca_representation_annotations_x_
→˓entities, ca_entities]

},
fields = {

entity_id = { DONT_INCLUDE_IN_SEARCH_FORM },
displayname = { PRIVATE },
forename = {},
surname = {},
middlename = {}

}
},

_access_points = {

label = {
fields = [ca_object_labels.name],
options = { DONT_INCLUDE_IN_SEARCH_FORM }

},
desc = {

fields = [ca_objects.description],
options = { }

},
}

}

This may look a bit intimidating at first, but there are actually only three types of sub-blocks present: indexing
configuration for the item itself (the indented ca_objects key immediately following the first ca_objects that defines
the block), indexing from related items (the ca_object_labels keys and those referencing other tables that follow) and
access point definitions (the _access_points key at the end of the sub-block). These sub-blocks form the core of the
configuration, and are discussed in detail below.

Sub-blocks

To index data elements that are part of the item itself create a sub-block whose key is the table name of the item.
For example, when indexing ca_objects records, define the data elements (metadata attributes intrinsic fields, special
fields) to be indexed in a sub-block with the key ca_objects. In the example configuration, this block is defined as:

ca_objects = {
fields = {

_metadata = { }, # forces
→˓indexing of all attributes

parent_id = {STORE, DONT_TOKENIZE, DONT_INCLUDE_IN_SEARCH_FORM },
source_id = {},
lot_id = {},
idno = { STORE, DONT_TOKENIZE, INDEX_AS_IDNO, BOOST = 100 },
type_id = { STORE, DONT_TOKENIZE },

(continues on next page)

1.18. Configuring Providence 193

CollectiveAccess Documentation, Release 1.8

(continued from previous page)

source_id = { STORE, DONT_TOKENIZE },
hier_object_id = { STORE, DONT_TOKENIZE },
access = { STORE, DONT_TOKENIZE },
status = { STORE, DONT_TOKENIZE },
deleted = { STORE, DONT_TOKENIZE },
is_deaccessioned = { STORE, DONT_TOKENIZE },
deaccession_notes = {},
deaccession_date = {},
circulation_status_id = { STORE, DONT_TOKENIZE }

},
Index idno's of related objects
related = {

fields = {
idno = { STORE, DONT_TOKENIZE, INDEX_AS_IDNO, BOOST = 100 }

}
}

},

The actual fields to index are included in a list with the field key. An additional related key is included, defining
indexing for objects related to objects. This will be discussed in detail later.

Each intrinsic field (non-repeating fields hardcoded in the CollectiveAccess database schema) to be indexed is listed
individually, with options enclosed in the curly brackets (“{}”). For convenience all configurable metadata elements
specific to your installation are indexed using the special _metadata field. This obviates the need for you to enumerate
each metadata element individually. If you need to not index certain elements, you can specify individual elements to
index using keys starting with ca_attribute_ followed by element codes (ex. metadata element “description” would be
listed as “ca_attribute_description”).

Only data elements listed in this block, or inferred by the _metadata special field, will be indexed.

Special fields There are two “special fields” that may be used in the field list. Special fields always start with under-
score character.

Option Description
_metadata Forces indexing of all metadata elements configured for the item. When indexing

of all fields is desired (the typical case) use of the _metadata special field obviates
the need to explicitly list all available fields, and to update indexing configuration
every time a new metadata element is added.

_count Embeds the number of related rows for a given table in the index. You can
specify this for both relationship (ex. ca_objects_x_entities) and primary (ex.
ca_entities) tables. The field is named <table_name>.count - for example: ob-
ject_representations.count for table ‘object_representations’. This can be used to
find rows that have, or don’t have, related rows in a given table.When specified on a
primary table (eg. ca_entities, ca_occurrences), counts are indexed in aggregate as
well as for each type. For relationship tables (eg. ca_objects_x_entities) counts are
indexed in aggregate as well as for each relationship type. For example querying on
a specific type or types: ca_entities.count/individual:3 (finds records with exactly
three related entities of type “individual”) ca_objects_x_entities.count/artist:[2 to
4] (finds objects with between two and four entities related as artist)

Field-level options

A variety of options are available to control how data elements are indexed:

194 Chapter 1. Contents

CollectiveAccess Documentation, Release 1.8

Option Description Example syntax
STORE Forces the value to be stored in the index, if possible; this can

speed display of the content in a search but may slow down in-
dexing and increases index size

not applicable

TOKENIZE Breaks content into separate values on whitespace characters,
such as a spaces or line breaks, or by punctuation characters
prior to indexing. This is the default and in general need not
be specified. It may be combined with the DONT_TOKENIZE
option to index values both as tokenized fragments and as a sin-
gle “as-is” value. This can be useful when indexing accession
numbers and other identifiers.

not applicable

DONT_TOKENIZE Indexes the value as-is, rather than breaking into separate values
on whitespace characters, such as a spaces or line breaks, or by
punctuation characters. This is useful for values that should not
be indexed as text, such as numeric values and accession num-
bers/identifiers.

not applicable

DONT_INCLUDE_IN_SEARCH_FORMIndicates that the data element should not be includable in user-
defined search forms.

not applicable

BOOST A numeric “boost” value for the index field. Higher values will
cause search hits on the boosted field to count for more when
sorting by relevance.

BOOST = 100

INDEX_AS_IDNO Causes the value to be indexed with various permutations for
flexible retrieval as a record identifier. For example, if this option
is used then a search for KA1 would return KA.0001.

not applicable

INDEX_AS_MIMETYPECauses the value to be indexed as a mime type variations to sup-
port flexible retrieval. For example, if this option is used then
mime type values of “image/wav” would be index under both
the literal mime type and “WAVE Audio”. (Available from ver-
sion 1.7.1)

not applicable

INDEX_ANCESTORS Enables hierarchical indexing for field, assuming it is in an hi-
erarchical table, resulting in all values for this field in records
above the subject in the hierarchy being indexing against the
subject

not applicable

INDEX_ANCESTORS_START_AT_LEVELForces hierarchical indexing to start X levels down from the root.
This allows you to omit the very highest, and least selective,
levels of the hierarchy when indexing. If omitted indexing starts
from the hierarchy root

INDEX_ANCESTORS_START_AT_LEVEL
= 2

INDEX_ANCESTORS_MAX_NUMBER_OF_LEVELSSets the maximum number of levels above the subject to be in-
dexed. If omitted all levels of the hierarchy above the subject are
indexed

INDEX_ANCESTORS_MAX_NUMBER_OF_LEVELS
= 3

INDEX_ANCESTORS_AS_PATH_WITH_DELIMITERSets a delimiter to place between each level of the hierarchy prior
to indexing the entire hierarchy path above the subject. This is
useful when you want to treat the hierarchy path as an identifier

INDEX_ANCESTORS_AS_PATH_WITH_DELIMITER
= .

PRIVATE Flags indexing for the data element as being only for use by
authenticated users and not for public use. Typically Pawtucket
front-ends will ignore indexing so flagged.

not applicable

COUNT For metadata elements only. Causes the number of values set for
the element in a record to be indexed. This enables searching on
records by the number of values in a given field. (Available from
version 1.7)

not applicable

You can set multiple options by separating them with commas. Options taking values should be separated from the
value by an equals sign. For example:

1.18. Configuring Providence 195

CollectiveAccess Documentation, Release 1.8

ca_objects = {
fields = {

idno = { STORE, DONT_TOKENIZE, INDEX_AS_IDNO, BOOST = 100 },

Indexing related items

Indexing can traverse relationships and include data elements in related items. This allows, for example, an object to
be found using the names of entities related to it. Most of the time only immediate relationships will be indexed (eg.
related entities indexed to objects via the object-entities relationship), but it is possible to specify any path between
items. Thus you could, for example, index entities against objects via a third item, such as occurrences.

Sub-blocks for related items have their key set to the related table name. A typical sub-block, for entity preferred
labels on objects, might look like this:

ca_entity_labels = {
tables = {

entities = [ca_objects_x_entities, ca_entities],
annotations = [ca_objects_x_object_representations, ca_object_

→˓representations, ca_representation_annotations, ca_representation_annotations_x_
→˓entities, ca_entities]

},
fields = {

entity_id = { DONT_INCLUDE_IN_SEARCH_FORM },
displayname = { PRIVATE },
forename = {},
surname = {},
middlename = {}

}
},

We index in the ca_entity_labels table, because that is the table storing entity labels (other times have similarly named
tables: ca_object_labels, ca_occurrence_labels, etc.). The tables key specifies the table path(s) through the Col-
lectiveAccess database to use to connect entity labels to objects. In this example we specify two paths, one via
ca_objects_x_entities (the direct relationship), and one via object representations and representation annotations. The
path should be the sequence of tables to traverse, starting with the table being indexed (in this example, ca_objects),
which is omitted.

The fields key includes all fields in the related table that should be indexed. In this case we index four name component
fields for entities against objects. The same special fields and options available when indexing fields in the item itself
are available when indexing related items.

Indexing preferred and non preferred labels

Labels are stored in the CollectiveAccess database as related records, and can be indexed similarly to other related
items. One difference: most relationships are many-to-many, with a relationship table in between. Labels are related
many-to-one without a relationship table, resulting in a simpler configuration. When indexing labels or any other
many-to-one relationship (ex. objects - object lots) you need any specify the name of the field in the related table that
references the primary item. In the example below this field name is object_id and is configured using a key

ca_object_labels = {
key = object_id,
fields = {

name = { BOOST = 100, INDEX_ANCESTORS, INDEX_ANCESTORS_START_AT_LEVEL
→˓= 0, INDEX_ANCESTORS_MAX_NUMBER_OF_LEVELS = 4, INDEX_ANCESTORS_AS_PATH_WITH_
→˓DELIMITER = . },

(continues on next page)

196 Chapter 1. Contents

CollectiveAccess Documentation, Release 1.8

(continued from previous page)

name_sort = { DONT_INCLUDE_IN_SEARCH_FORM },
_count = {}

},
Index names of related objects
related = {

fields = {
name = { BOOST = 100, INDEX_ANCESTORS, INDEX_ANCESTORS_START_

→˓AT_LEVEL = 0, INDEX_ANCESTORS_MAX_NUMBER_OF_LEVELS = 4, INDEX_ANCESTORS_AS_PATH_
→˓WITH_DELIMITER = . }

}
}

},

Counting related items

The number of related items can be indexed using the _count special field. When placed in the sub-block for the
related item (ca_entities in our example), counts will be indexed in total and by item type (eg. by entity type). When
_count is placed in a sub-block for a relationship table, counts will be indexed in total and by relationship type. In our
example this configuration indexes counts for related entities on the object, broken out by relationship type:

ca_objects_x_entities = {
key = object_id,
fields = {

_count = { }
}

}

Indexed counts may be searched using the count field on the appropriate table.

Controlling related indexing

Indexing of related items can be restricted to specific relationship types using an alternate syntax for the tables list.
Rather than using a list of tables:

you can specify an associative array with additional setting:

entities = {
ca_objects_x_entities = {

types = [artist, publisher]
},
ca_entities = {}

}

the types setting is a list of relationship types to restrict indexing to.

You can also flag related indexing in a sub-block as private (not to be used in public interfaces) by specifying the
PRIVATE option in relevant table paths.

As of version 1.7.6 it is possible to restrict indexing by related item type using a “types” key in a sub-block with a list
of types to restrict to.

Indexing self-relationships

“Self-relationships” are connections between two items of the same kind, such as object-to-object and entity-to-entity
relationships. Indexing configuration for this sort of relationship is handled differently then that of other related items.
To index self-relationships include a “related” key in the sub-block for the item table. In our example the block is:

1.18. Configuring Providence 197

CollectiveAccess Documentation, Release 1.8

ca_objects = {
fields = {

_metadata = { }, #
→˓forces indexing of all attributes

parent_id = {STORE, DONT_TOKENIZE, DONT_INCLUDE_IN_SEARCH_
→˓FORM },

source_id = {},
lot_id = {},
idno = { STORE, DONT_TOKENIZE, INDEX_AS_IDNO, BOOST = 100 },
type_id = { STORE, DONT_TOKENIZE },
source_id = { STORE, DONT_TOKENIZE },
hier_object_id = { STORE, DONT_TOKENIZE },
access = { STORE, DONT_TOKENIZE },
status = { STORE, DONT_TOKENIZE },
deleted = { STORE, DONT_TOKENIZE },
is_deaccessioned = { STORE, DONT_TOKENIZE },
deaccession_notes = {},
deaccession_date = {},
circulation_status_id = { STORE, DONT_TOKENIZE }

},
Index idno's of related objects
related = {

fields = {
idno = { STORE, DONT_TOKENIZE, INDEX_AS_IDNO, BOOST =

→˓100 }
}

}
},

The configuration for the self-relationship indexing is in bold. The fields are configured similarly to other types of
indexing, with the same options and special fields. related indexing for preferred and non-preferred labels may be
added in the many-to-one label indexing configuration.

As of version 1.7.4 you can also include a list of types to restrict related indexing to. If you wish, for example, to only
index related objects of type “artwork” and “book” against other objects the relevant fragment of configuration might
look like so:

Index idno's of related objects
related = {

types = [artwork, book],
fields = {

idno = { STORE, DONT_TOKENIZE, INDEX_AS_IDNO, BOOST = 100 }
}

}

Indirect self-relationships

As of version 1.7.6 it is also possible to index two items of the same kind indirectly, through a series of relationships
to items of other types. For example, objects can be indexed against other objects that share the same related entities.
In this case you would be indexing objects > entities > objects.

To configure this sort of indexing create a sub-block with a key set to the item name followed by “.related” You can
then configure indexing as you would for any other related record. For objects the configuration might look like this
fragment:

ca_objects.related = {
tables = {

entity = [ca_objects_x_entities, ca_entities, ca_objects_x_entities]
(continues on next page)

198 Chapter 1. Contents

CollectiveAccess Documentation, Release 1.8

(continued from previous page)

},
fields = {

idno = { STORE, DONT_TOKENIZE, INDEX_AS_IDNO, BOOST = 100 }
}

},

This would index objects with the idno field values of any objects with the same related entities.

Access Points

The access points sub-block (use key _access_points) defines aliases for specific indexed elements or groups of ele-
ments. It also allows a user to set attributes to be used in search forms as well as search shortcuts.

Search Shortcuts

With _access_points you can create shortcuts to be used in any search system-wide, including Basic Search, Quick
Search, Find in the Hierarchy bundle, and Advanced Search.

Let’s say you want to create a search shortcut for a “Materials” element on your object record. In the Access points
sub-section of the objects section of your configuration file:

ca_objects = {

_access_points = {

you would add the “Materials” access_point. Whatever you want the shortcut to be (let’s say “mat”) should be included
on the left side of the equals sign:

ca_objects = {

_access_points = {

mat = {
fields = [ca_objects.material],
options = { DONT_INCLUDE_IN_SEARCH_FORM }

},

Within the square brackets to the right of the fields equals sign, the attribute’s elementCode is used (following a period
and the CA table name).

Now you can quickly search for materials anywhere in your system using the syntax:

mat:stone

It is also possible to create shortcuts that bundle several elements together. A search on the access point will search all
of the included fields at the same time. Each attribute should be comma separated:

style = {
fields = [ca_objects.material, ca_objects.medium, ca_objects.technique],

Remember that if you want to search for multiple words within your single access point, quotation marks should
enclose the whole string:

style:"stone sculpture"

A search for simply:

style:stone sculpture

1.18. Configuring Providence 199

CollectiveAccess Documentation, Release 1.8

would mean search for stone in the Materials, Medium & Technique fields AND sculpture anywhere else. That would
mostly likely also return effective (but different) search results. Similarly, there shouldn’t be a space between the colon
and the search term (i.e. style: stone) because the search will “break” on the space and the search preformed will be a
universal query for stone.

If your target element for a search shortcut is a container, make sure to include the full path of
ca_table.elementCode.subElementTarget or:

fields = [ca_objects.description.description_source],

Search forms

You may have noticed that in the code examples above an option was used:

options = { DONT_INCLUDE_IN_SEARCH_FORM }

This is because by default each defined metadata element will be pulled into the available elements for building search
forms. Including your shortcut a second time would be redundant. However, if you’re adding an access point that isn’t
already included (say, “filename” which until recently wasn’t indexed by default but was stored in the database) you
would define it here and remove the DONT_INCLUDE_IN_SEARCH_FORM option.

Note that all fields included in an access point must be included in the search index - they must appear in the fields
list in other words. All indexed fields automatically have access points created in the format tablename.fieldname (ex.
objects.title); indexed metadata also have access points in the format tablename.md_<element_id> (ex. objects.md_5)

Rebuilding the search index

Changes to search_indexing.conf take effect immediately for all subsequent indexing. Any items indexed prior to the
change will not reflect the configuration modifications. To update the entire search index to reflect the new configura-
tion, rebuild the index using “Rebuild search indices” web interface under Manage > Administrate > Maintenance; or
reindex using the command-line caUtils rebuild-search-indices command

1.18.7 Authentication

Providence (and Pawtucket) allow for a range of authentication providers to be configured. By default this is handled
internally, but external providers can be used, including federation authentication services.

1.18.8 Datetime.conf

‘’‘In Progress’‘’

The output, or display, of dates and times inside dateRange metadata elements can be configured in datetime.conf. For
valid input formats for dates and times, please visit [[Date_and_Time_Formats|this page.]]

Date/time output configuration

In Datetime.conf, you may define common text expressions you wish to have the date/time parser convert to dates.
The text expression on the left side of the equal sign must be all lowercase; the date/time expression on the right side
must be valid and parsable:

expressions = {
us civil war = 1861 to 1865,

world war 2 = 1939 to 1945,
nickel empire = 1920s,

}

200 Chapter 1. Contents

CollectiveAccess Documentation, Release 1.8

1.18. Configuring Providence 201

CollectiveAccess Documentation, Release 1.8

Output options for date/times

Setting Description Options
dateFormat

Format to use for dates. “Original” is the date as
entered by the user; other values will normalize all
date/time input to the selected standard format.

Valid
values
are text,
delim-
ited,
iso8601,
and orig-
inal. The
default is
text.

timeOmit You may output or omit the time portion of date time expres-
sions.

1 (yes) or 0 (no)

showCommaAfterDayForTextDatesIf set to a non-zero value commas are included after the day in a
US-style (month first) text date

Default = 0

timeFormat
Format to use for times. “12” displays as, for
example, 3:15 PM, where “24” would display at
15:15PM.

Valid values are 12
and 24. Default = 24.

useQuarterCenturySyntaxForDisplay
If true dates ranging over uniform quarter centuries,
such as 1900-1925 or 1975-2000 will be output in
the format “20 Q1” eg. 1st quarter of 20th century,
or 1900-1925.

1 (yes) or 0 (no)

useRomanNumeralsForCenturies
If true century only dates (eg “18th century”) will be
output in roman numerals like “XVIIIth century”.

1 (yes) or 0 (no)

timeDelimiter Delimiter in time display; must be valid for the current language
or default will be used; Default is first delimiter in language con-
fig file.

:

timeRangeConjunction Text to put between times in a range; must be valid for the cur-
rent language or default will be used; default is first in language
config.

-

rangePreConjunction Text to place before date/times in a range; must be valid for the
current language or default will be used. Default is none.

from

rangeConjunction Text to place between date/times in a range; must be valid for
the current language or default will be used.

to

dateTimeConjunction Text to put between times in a range; must be valid for the cur-
rent language or default will be used; default is first in language
config.

to

showADEra
If set to a non-zero value the “AD” era will be show
for all dates; default is to only show it in ranges that
span era

1 or 0

uncertaintyIndicator Text to use to indicate date is uncertain; must be valid for the
current language or default will be used.

circa

dateDelimiter Text to place before date/times in a range; must be valid for the
current language or default will be used. Default is none.

circaIndicator
Text to place before date/times to indicate it is a
“circa”, or uncertain, date. Must be valid for the
current language or default will be used.

circa

beforeQualifier Text to place before a date/time to indicate that it is no later
than the specified date; must be valid for the current language or
default will be used.

before/prior to

afterQualifier Text to place before a date/time to indicate that it is no earlier
than the specified date; must be valid for the current language or
default will be used.

after

presentDate Text that represents the current date; must be valid for the current
language or default will be used.

today

202 Chapter 1. Contents

CollectiveAccess Documentation, Release 1.8

1.18.9 Dimensions.conf

1.18.10 External_applications.conf

Several components of CollectiveAccess employ external applications to perform various tasks. Typically these tasks
relate to conversion and reformatting of uploaded media (images, video, audio, etc.) and indexing of text embedded
in uploaded files.

The external_applications.conf file defines the locations of these applications on your server. If an application location
is set incorrectly or the application is not installed then the functionality provided by the application will not be
available within CollectiveAccess.

The locations you set should be absolute paths to the directory or executable (as specified below) in the standard format
for your OS (Unix paths or Windows paths).

Directives

The following entries may be defined in this configuration file. Note that there are no default values for entries in
external_applications.conf. You must define a value for all applications you wish to use.

1.18. Configuring Providence 203

CollectiveAccess Documentation, Release 1.8

Entry Description Typical value (not
default: just an ex-
ample in Unix path
format)

ghostscript_app Path to Ghostscript binary (“gs” command) used to generate
page images from PDF files

/usr/local/bin/gs

ffmpeg_app Path to ffmpeg binary used to convert video and audio media /usr/local/bin/ffmpeg
qt-faststart_app Path to [ttp://ffmpeg.mplayerhq.hu qt-faststart] binary used to

hint h.264/MPEG-4 video for streaming. qt-faststart is part of
ffmpeg and located in the tools/ directory in the source tree.

/usr/local/bin/qt-
faststart

dcraw_app Path to dcraw binary used to convert various proprietary RAW
formats produced by digital cameras

/usr/bin/dcraw

imagemagick_path Path to directory containing ImageMagick binaries used to con-
vert various image formats. Note that unlike the other entries
in this file, imagemagick_path refers to a directory rather than a
specific executable

/usr/local/bin

pdftotext_app Path to pdftotext binary (part of the xpdf package from) used to
extract text embedded in PDF files

/usr/local/bin/pdftotext

media_info_app Path to MediaInfo binary used to extract metadata from media
files. MediaInfo is optional and is used if present because it gen-
erally does a better job of extracting metadata than the methods
built into CA and its media processing plugins.

/usr/local/bin/mediainfo

libreoffice_app Path to LibreOffice 3.6 or better binary used to process uploaded
Microsoft Word, Excel and PowerPoint files. If you wish to have
Word, Excel and PowerPoint content indexed for search and pre-
views generated, you must have LibreOffice installed. See this
cookbook entry for more information.

/usr/bin/libreoffice

pdfminer_app Path to the directory containing the PDFMiner script used to an-
alyze uploaded PDF files. Like PDFToText, PDFMiner can ex-
tract text for indexing from PDF files. It can also extract page lo-
cations for individual words, enabling search-within-PDF func-
tionality in CollectiveAccess. If you want to search within PDFs
with term highlighting in CA PDFMiner must be installed.

/usr/local/bin

exiftool_app Path to the ExifTool application (http://www.sno.phy.queensu.
ca/~phil/exiftool/) used to extract metadata from uploaded media
files.

/usr/bin/exiftool

phantomjs_app Path to the PhantomJS HTML-to-PDF converter (http://
phantomjs.org) used to generate printable PDF output.

/usr/local/bin/phantomjs

wkhtmltopdf_app Path to the wkhtmltopdf HTML-to-PDF converter (http://
wkhtmltopdf.org) used to generate printable PDF output.

/usr/local/bin/wkhtmltopdf

openctm_app Path to the OpenCTM (http://openctm.sourceforge.net) ctmconv
command line utility used to compress PLY and STL 3d models
for high efficient delivery and in-browser display. (From version
1.6)

/usr/local/bin/ctmconv

meshlabserver_app Path to the MeshLab (http://meshlab.sourceforge.net) meshlab-
server command-line utility, used to convert PLY files to STL.
(From version 1.6)

/usr/local/bin/meshlabserver

204 Chapter 1. Contents

http://www.sno.phy.queensu.ca/~phil/exiftool/
http://www.sno.phy.queensu.ca/~phil/exiftool/
http://phantomjs.org
http://phantomjs.org
http://wkhtmltopdf.org
http://wkhtmltopdf.org
http://openctm.sourceforge.net
http://meshlab.sourceforge.net

CollectiveAccess Documentation, Release 1.8

1.18.11 Library_services.conf

1.18.12 OAI_harvester.conf

1.18.13 OAI_provider.conf

1.18.14 Prepopulate.conf

The Prepopulate plugin provides a system for automatically setting data in records during editing using display tem-
plates and Expressions. Common use cases include:

• Replicating data between parent and child records in hierarchies or related records.

• Generating formatted text values using several metadata values and, potentially, context-specific logic. (Format-
ting various field values into a bibliographic citation, for example)

• Forcing one or more fields to default values based upon the value of another field.

Prepopulate applies configured rules to records as they are edited. Rule typically define a target to set a value
for and a display template with which to generate the value. Templates are evaluated relative to the record being
edited so all values accessible with respect to that record, including related records and parent and child records in
hierarchies are available to the template. Rules may be constrained to apply to specific tables and, optionally, record
types. Application of rules can be made contingent upon evaluation of an Expressions (which can also reference all
values accessible to the edited record) or the current status of the target metadata element.

It is also possible to configure rules that replicate relationships between records. As of version 1.7.9, Prepopulate may
be configured to replicate between records container metadata elements in whole or in part.

Basic Setup

All configuration is made in the prepopulate.conf configuration file. The enabled directive governs whether
Prepopulate is active or not. It must be set to a non-zero value for any Prepopulate-based actions to occur. Two other
directives control which user actions trigger application of configured rules when Prepopulate is enabled:

• prepopulate_fields_on_edit will cause rules to be applied whenever a record is opened in the editor.

• prepopulate_fields_on_save will trigger application of rules whenever a record is saved.

For rules to be applied enabled and at least one of prepopulate_fields_on_edit and
prepopulate_fields_on_save must be set.

The prepopulate_rules directive contains a dictionary of rules to apply. Each key is a unique alphanumeric
identifier for a rule. The precise value is not critical, but it must be unique and should be meaningful. Corresponding
values are dictionaries with keys and values defining rule behavior.

An example prepopulate_rules dictionary with a single rule with code test_rule is shown below:

prepopulate_rules = {

test_rule = {

what types of records does this rule apply to?
table = ca_objects,
restrictToTypes = [artwork],

mode determines handling of existing values in target element
can be overwrite, or addIfEmpty
See the 'target' setting below
mode = addIfEmpty,

(continues on next page)

1.18. Configuring Providence 205

CollectiveAccess Documentation, Release 1.8

(continued from previous page)

What's the prepopulate target?
This can be an intrinsic field, labels or an attribute.
#
Note that if you want to target a List attribute, you have to
provide a valid list item idno or id for that list as value!
#
target = ca_objects.title_notes,

skip this rule if expression returns true
available variable names are bundle names
skipIfExpression = ^ca_objects.idno =~ /test/,

content to prepopulate
(this is a display template evaluated against the current record)
template = ^ca_objects.preferred_labels (^ca_objects.idno),

}

}

This rule applies to object records (see the table setting) of type “artwork” (see restrictToTypes). When eval-
uated, it will fill the “title_notes” field (see target) with the object record’s preferred label and identifier, formatted
with the identifier in parens (see template). The rule will be skipped if the object identifier contains the word “test”
(see skipIfExpression) or of there is already a value in the “title_notes” field for the object (see mode).

Replicating relationships and containers

Most rules generate a text value using template and copy it to the target, subject to optional restrictions (mode,
skipIfExpression, restrictToTypes, etc). It is also possible to replicate relationships in Prepopulate using
the context directive. In this case, target is the type of relationship to replicate and context defines the source
of the relationship. Possible contexts are “related”, “parent” or “children”.

An example configuration for replicating relationships using context follows:

related_entities = {
table = ca_objects,

add relationships that do not already exist
mode = merge,

copy all entities related to objects related to the target record
target = ca_entities,
context = related,

copy only those entities related with the relationship type "artist"
restrictToRelationshipTypes = [artist],

don't copy relationships with specified relationship type codes;
#excludeRelationshipTypes = [],

copy only entities that are the type "individual"
restrictToRelatedTypes = [individual],

don't copy relationships pointing to specified types
#excludeRelatedTypes = [],

(continues on next page)

206 Chapter 1. Contents

CollectiveAccess Documentation, Release 1.8

(continued from previous page)

only consider "current" relationships - Eg. current storage location
currentOnly = 0,

}

The example above copies all entity relationships to entities of type “individual” on objects related to the currently
edited object. If the context had been set to “parent” entity relationships on the parent object would have been copied
to the currently edited object.

Individual values in a container metadata element can be copied using the standard template/target rules de-
scribed earlier. To copy an entire container between records without requiring a separate rule for each sub-element use
the source directive to specify the container you wish to copy to the target. Prepopulate will assume the source
and target containers have identical structure. To map values between different structures use the sourceMap di-
rective to create a conversion table mapping equivalent sub-elements in each container.

An example configuration for replicating container values in their entirety from a parent record to a child record using
source and sourceMap is below:

dimensions_container_rule = {
table = ca_objects,
restrictToTypes = [edition_item],

mode = addIfEmpty,

target = ca_objects.edition_dimensions,

skip this rule if expression returns true
available variable names are bundle names
#skipIfExpression = ^ca_objects.idno =~ /test/,

for prepopulation of full containers where the container has the
→˓same

format in both the source and target you can copy it directly by
→˓specifying

a "source" specification. Sub-element codes must match exactly for
→˓this to work.

source = ca_objects.parent.edition_dimensions,

If sub-element codes don't match exactly you can specify a mapping
→˓where source

keys are on the left and target keys on the right. This also
→˓enables partial copy

of containers, as when sourceMap is specified only those keys
→˓defined in the map are copied

sourceMap = {
edition_display_dimensions = edition_display_dimensions,
edition_dimensions_height = edition_dimensions_height,
edition_dimensions_width = edition_dimensions_width,
edition_dimension_types = edition_dimension_types,
edition_dimensions_notes = edition_dimensions_notes

}
}

Settings

The following settings are available when configuring Prepopulate rules:

1.18. Configuring Providence 207

CollectiveAccess Documentation, Release 1.8

Set-
ting
name

Description Valid val-
ues

Example

ta-
ble

Defines what table the rule applies to. Required. Any pri-
mary
table

ca_objects

re-
strict-
To-
Types

Optional list of types to restrict rule to. Any valid
type for
the table.

[artwork, image]

mode Required setting controlling how and if rule is applied when
the target contains existing values. See flowchart below. Op-
tions are:
addIfEmpty: set value only if none already exists
overwrite: replace existing values; if the value to be set in
the target is empty existing values will be removed but not
replaced
overwriteifset: replace existing values only if the value to be
set to a non-empty value
merge: add values that do not already exist

One of ad-
dIfEmpty,
overwrite,
over-
writeifset,
merge

addIfEmpty

tar-
get

Specifies the metadata element that the rule will set values for.
The target must be part of the record being edited. The value
set is defined by the template or source directives.
Note that if when targetting a List metadata element, you must
provide a valid list item idno or numeric item_id as the value.

A valid
bundle
specifier
for either
a intrinsic
field, la-
bels or an
metadata
element

[ca_objects.description]

tem-
plate

A display template defining the value to be set in the tar-
get. The display template is evaluated against the current
record and can incorporate any value accessible to the cur-
rently edited record, including related records and hierarchical
values. Required, unless the rule is targeting a container meta-
data element with a full copy of another container in which
case source must be set.

A valid
display
template.

^ca_objects.medium_container.medium
^ca_objects.medium_container.support

source Rules using template set only a single text value in the tar-
get. When prepopulating container metadata elements with
values another instance of the container in a related record
(Ex. replicating a container in a parent record to a child
record) source may be used to specify the instance to copy
from. Sub-element codes are assumed to match exactly, so on
its own source is only useful for copying containers from
related or hierarchical parent or child records. It is possible
to selectively copy elements from different containers using
source in conjunction with the sourceMap directive.. Avail-
able from version 1.7.9.

A valid
bundle
speci-
fier for a
container
metadata
element.

ca_objects.dimensions

sourceMapA dictionary mapping sub-element codes in a source container
(specified by the source directive) to sub-element codes in
the target container. Only values defined in the dictionary will
be copied to the target. SourceMap can be used to copy values
betwen differently structured containers or, by omitting sub-
elements, to selectively copy data between two instances of
the same container. Available from version 1.7.9.

A dic-
tionary
container
keys set
to source
container
sub-
element
codes and
values
set to
target sub-
element
codes.

{ edi-
tion_display_dimensions
= edi-
tion_display_dimensions,
edition_dimensions_height
= edi-
tion_dimensions_height,
edition_dimensions_width
= edi-
tion_dimensions_width,
edition_dimension_types =
edition_dimension_types,
edition_dimensions_notes =
edition_dimensions_notes }

skip-
If-
Ex-
pres-
sion

An optional expression that controls if the rule is applied. The
expression is evaluated relative to the currently edited record.
If the result is true, the rule will not be applied for the current
record.

A valid ex-
pression

^ca_objects.object_status_new
!~ /deaccessioned/

con-
text

Controls how relationships are prepopulated. Options include
parent = copy relationships from the parent record
children = copy relationships from child records
related = copy relationships from related records (Eg. if table
= ca_objects and target = ca_entities copy all entity relation-
ships from related objects)

parent,
children,
or related

parent

re-
strict-
ToRe-
la-
tion-
ship-
Types

When context directive is set this setting can be employed
to constrain replication of relationships to only include spe-
cific relationship type codes

A list of
valid re-
lationship
types

[author, editor]

ex-
clud-
eRe-
la-
tion-
ship-
Types

When context directive is set this setting can be employed
to constrain replication of relationships to exclude specific re-
lationship type codes

A list of
valid re-
lationship
types

[creator]

re-
strict-
ToRe-
lat-
ed-
Types

When context directive is set this setting can be employed
to constrain replication of relationships to only include related
records with the specified types.

A list of
valid types

[artwork]

ex-
clud-
eRe-
lat-
ed-
Types

When context directive is set this setting can be employed
to constrain the replication to exclude related records with the
specified types.

A list of
valid types

[ephemera, books]

cur-
ren-
tOnly

When the context directive is set, only consider “current”
relationships for replication. Eg. current storage locations

1 or 0 0

208 Chapter 1. Contents

CollectiveAccess Documentation, Release 1.8

Flowchart

Typical Prepopulate processes are diagrammed below. Note that the mode “overwriteifset” (which is not shown in the
diagram) is identical to “overwrite” save that no overwrite is performed for empty values.

1.18.15 Search.conf

Indexing Tokenizer Regex

This is the Regex character class used when indexing saved text; values matched will be used as token delimiters (in
other words, the search expression will be broken into words wherever the matched characters are). Note that the
default class, as displayed in the example below, starts with a caret (“^”), which has the effect of negating the class. In
other words, the class defines what characters will not be treated a token delimiters.

indexing_tokenizer_regex = ^\pL\pN\pNd/_#\@\&\.

Search Tokenizer Regex

This is the Regex character class used when searching; values matched will be used as token delimiters (this is the
same thing as indexing_tokenizer_regex except that it’s used when to break user searches into words rather than text
to be indexed).

search_tokenizer_regex = ^\pL\pN\pNd/_#\@\&\.

1.18. Configuring Providence 209

../../_static/images/Prepopulate.jpg

CollectiveAccess Documentation, Release 1.8

“As Is” Regex Matching for Accession Numbers

Here you may enter a list of regular expressions that if matched cause search input to be treated “as-is,” or searched
without being broken up into tokens. This is useful for preventing tokenization of accession numbers and other values
that rely upon punctuation being kept intact when being searched.

asis_regexes = [
"^[\d]+[\.\-][A-Za-z0-9\.\-]+$"

]

Changing the layout of quicksearch results

With the following format:

ca_<table>_<type>_quicksearch_result_display_template =

or

ca_<table>_quicksearch_result_display_template =

The format of the quick search results can be altered. The value of the template uses the same syntax as bundle
displays. The below is an example for adding “artists” to an “artwork” search result layout:

ca_objects_artwork_quicksearch_result_display_template =
<unit relativeTo='ca_entities' restrictToRelationshipTypes='artist'><u>^ca_entities.
→˓preferred_labels.surname, ^ca_entities.preferred_labels.forename</u>:</unit>
^ca_objects.preferred_labels.name (<l>^ca_objects.idno</l>) [^ca_objects.
→˓type_id]

SqlSearch Plugin Configuration

Set to 0 if you don’t want search input stemmed (ie. suffixes removed) prior to search

The plugin uses the English Snoball stemmer (http://snowball.tartarus.org/) and can give poor results with non-English
content. If you are cataloguing non-English material you will probably want to turn this off.

search_sql_search_do_stemming = 1

ElasticSearch Plugin Configuration

enter the elastic search base url here (without any index names) search_elasticsearch_base_url = http://localhost:9200/

This is the name of the ElasticSearch index used by CollectiveAccess. You probably don’t need to change this
unless you’re using a single ElasticSearch setup for multiple CollectiveAccess instances and/or other applications.
search_elasticsearch_index_name = collectiveaccess

210 Chapter 1. Contents

http://snowball.tartarus.org/
http://localhost:9200/

CollectiveAccess Documentation, Release 1.8

1.18.16 Visualization.conf

1.18.17 Attribute_presets.conf

1.18.18 Default_media_icons.conf

1.18.19 External_exports.conf

1.18.20 Linked_data.conf

Add table for Getty Information Services from this page: https://docs.collectiveaccess.org/wiki/Information_Services

1.18.21 Media_display.conf

The media_display.conf file controls how media representations are displayed in both the media overlay and media
editor. Display settings can be customized for images, video, video H264 original, quicktime Viewer, audio, pdf files,
documents, postscript, and text.

Media Overlay and Media Editor

The media overlay is accessed by clicking through the representation from the Inspector in Providence. The media
editor, on the other hand, is accessed by clicking through the thumbnail representation on the media editor itself. You
can set the display options differently here, or configure them to be identical to the media overlay.

1.18. Configuring Providence 211

https://docs.collectiveaccess.org/wiki/Information_Services

CollectiveAccess Documentation, Release 1.8

Option Description Example syntax
mimetypes Mimetypes are are codes that unambiguously identify a media

format. By default, nearly all supported mimetypes are included,
but the user is free to add more according to the capabilities of
the server and which plugins are running.

image/jpeg, im-
age/tiff, image/png

display_version Controls which image or video display version is shown in the
overlay or editor.

tilepic, video/mp4

viewer_width Sets the width of the media in the overlay or editor. 100%
viewer_height Sets the height of the media in the overlay or editor. 100%
use_book_viewer_when_number_of_representations_exceedsWhen the number of media representations exceeds the number

set here, the book viewer will be used to display the images.
2

use_book_viewer Enables the bookviewer. For documents, enabling this in addi-
tion the pdfjs viewer will allow non-pdf documents to be shown
in the Bookviewer while PDFs will continue to be shown in the
pdfjs viewer.

1 (yes) or 0 (no)

show_hierarchy_in_book_viewerIf the record has sub-records with media, media representations
of child records will be shown if the hierarchy is enabled.

1 (yes) or 0 (no)

restrict_book_viewer_to_typesYou can restrict the use of the book viewer to particular object
types by entering the type code for each between the brackets,
separating types by comma

[object_type_code,
object_type_code]

download_version This sets which version of the media can be downloaded from
the media editor.

original, large

poster_frame_version Specifies which version to use for the video player as a still im-
age prior to starting playback.

mediumlarge

alt_display_version Specifies the version of still image to be used when video cannot
be displayed. For example, what would be displayed for a Flash
video of the user did not have Flash.

large

use_pdfjs_viewer Enables the recommended viewer for pdf files. 1 (yes) or 0 (no)

212 Chapter 1. Contents

CollectiveAccess Documentation, Release 1.8

1.18.22 Media_metadata.conf

1.18.23 Navigation.conf

1.18.24 Replication.conf

1.18.25 Services.conf

1.18.26 Statistics.conf

1.18.27 Translations.conf

1.18.28 Annotation_types.conf

1.18.29 Assets.conf

1.18.30 Attribute_types.conf

1.18.31 Datamodel.conf

1.18.32 Find_volumes.conf

1.18.33 Find_navigation.conf

1.18.34 Media_volumes.conf

CollectiveAccess stores uploaded media and derivatives in the media directory.

You can change the location where media is stored by editing the media volumes configuration file in app/conf/
media_volumes.conf.

Organization

The file includes an entry per volume.

Key Description Example
hostname Hostname <site_hostname>
protocol Protocol (ftp, http[s], etc.) <site_protocol>
urlPath Base path for exposing the media on this volume <ca_media_url_root>/images
abso-
lutePath

Absolute filesystem path for the volume <ca_media_root_dir>/images

writeable A flag to indicate if the volume is writeable or not 1
descrip-
tion

Description of the volume Images

accessUs-
ingMirror

Name of mirror to serve media from, when available. If the specified mirror does
not yet have the required media, the local copy will be served.

mirrors An associative array of available mirrors. Content will be copied to each of them

1.18. Configuring Providence 213

CollectiveAccess Documentation, Release 1.8

FTP Mirror configuration

The mirror configuration directives are:

Direc-
tive

Description Exam-
ple

method How the files are to be mirrored. Only FTP is currently supported. ftp (must be lowercase) ftp
host-
name

The hostname of the server to while the files will be mirrored. ftp.mymirror.com

user-
name

The username to use when logging into the mirror server. (Ask your server administrator if
you are unsure)

user

pass-
word

The password to use when logging into the mirror server. (Ask your server administator if
you are unsure)

password

direc-
tory

The directory into which to upload the mirrored media files. In general this should be an
absolute path, but depending upon how your FTP login is setup it may be a relative path. (As
your server administrator if you are unsure)

/usr/local/ftp/ca/images

pas-
sive

If set to ‘1’ (the number one) then passive FTP connections are used. Passive connections
are usually required if you are behind a firewall.

1

ac-
cessPro-
tocol

The protocol to use in URLs that reference media on this mirror server. For simple web-
served media like images this will usually be http or https. For streaming media this may be
http, rtsp or rtmp.

http

ac-
cessHost-
name

The hostname to use in URLs that reference media on this mirror server. This is often, but
not necessarily, the same as the hostname directive.

www.mymirror.com

acces-
sUrl-
Path

The URL path (the part after the hostname) used to reference media on this mirror server.
This is often, but not necessarily, the subset of the path set in the directory directive that is
relative to a web server root.

/ca/images

1.18.35 Monitor.conf

1.18.36 User_actions.conf

1.18.37 User_pref_defs.conf

1.19 Configuration File Syntax

A configuration file can contain any number of key-value pairs. Keys are simple alphanumeric text expressions. Values
may be one of three types:

• Scalar: a string or number. Strings are always unquoted and may contain any character.

• List: a list of strings or numbers separated by commas and enclosed in square brackets ([and]). A string must
be enclosed in double quotes if it contains a comma. You may not place the double quote character in a list item.
Lists are retrievable as indexed PHP arrays. Lists may not be nested.

• Associative array: a list of key-value pairs. Both keys and values must be enclosed in double quotes if they
contain commas. Neither may contain double quotes. Associative arrays are enclosed with curly brackets ({ and
}). Separate keys from values with “=” Separate key-value pairs from each other using commas. Values may be
strings, numbers or nested associative arrays. Associative arrays may be nested to any depth.

• Keys are always separated from values by “=” You may place as many spaces as you like on either side of the
“=” character. Both lists and associative array may span as many lines as necessary.

214 Chapter 1. Contents

CollectiveAccess Documentation, Release 1.8

Any line starting with a pound (“#”) sign is considered a comment and ignored. It is ok to put leading spaces or tabs
before a comment.

Note that if you begin a scalar value with a ‘[‘ or ‘{‘ character it will be parsed as a list or associative array respectively,
which is not what you want. Be sure to precede the ‘[‘ or ‘{‘ with an exclamation point (‘!’) to indicate to the parser
that you really want a scalar value.

An example configuration file, illustrating all three value types is below:

'email' is a simple scalar value
all it does is set 'email' equal to the email address
#
email = support@collectiveaccess.org

'locales' is a list value
The values in the list are available to CA as a simple '''ordered''' list.
#
locales = [en_US, de_DE, sp_AR]

'search_indexes' is an associative array (aka. a 'hash' in Perl-speak or a 'map' in
→˓other languages)
Each key in the array has associated with it a value, which can be either a simple
→˓scalar (as in the case of the "sortable = yes" lines below) or a nested associative
→˓array. You can nest arrays to any depth.
#
search_indexes = {

objects = {
title = {

sortable = yes,
searchable = yes

},
description = {

sortable = no,
searchable = yes

}
}

}

Substituting values Scalar values, once set, can subsequently be used, or substituted, in other locations in the configu-
ration file. This allows you to set frequently used values at the beginning of a configuration file for use later in the file.
If you need to change the value, you need only change it in one place - the place where it is defined.

Substituted values are simple scalar keys enclosed in “pointy” brackets (< and >), as in this example:

protocol = http
hostname = www.collectiveaccess.org

url = <protocol>://<hostname>

Here, we set the URL protocol (HTTP) and the hostname of the URL (www.collectiveaccess.org), then substitute the
two values into the url key to create a valid URL.

1.19.1 Translating values into the user’s current language

Any scalar values can be tagged for translation into the user’s preferred language by enclosing them in a translation
marker, like so: _(“. . . my text . . . ”). Text so tagged with be passed to the GNU GetText translation function _t(),
which is defined in app/helpers/utilityHelpers.php.

1.19. Configuration File Syntax 215

http://www.gnu.org/software/gettext/

CollectiveAccess Documentation, Release 1.8

1.20 Introduction to Search & Browse Types

1.21 Search Syntax

No matter what back-end search engine you configure CA with, the Lucene search syntax is always used to specify
queries. This helps to provide a consistent experience for users across implementations and also leverages the Lucene
syntax, which is well designed and widely adopted. Note that not all back-end engines support all aspects of the
Lucene syntax. In general you can rely upon core functionality always being supported: text searches, field-level
limiting, parenthetical grouping and booleans. Features such as boosting, fuzzy matching and range searches may not
be available in all engines.

1.21.1 Fulltext searches

To search across all indexed fields in the database (as defined in the search_indexing.conf configuration file) simply
type in a word or words. Depending upon the engine, your input may be stemmed (suffixes removed before comparison
with the index) to improve results. Most engines will only return results that contain all of the words specified, but
some may employ logic to return seemingly relevant partial matches.

1.21.2 Limiting your search to a specific field

If you wish to restrict your search to a specific field in the CA database, specify the table name and field separated by
a dot, like this:

<table>.<field> (ex. ca_object_labels.name)

A query in the form of

ca_object_labels.name:Rollercoasters

would return only objects whose label (eg. its title) contains the word rollercoasters

Note that this applies only to “intrinsic” fields that are hardcoded into the CA database. That is, they are always present
no matter how you have CA configured - although you may not be using them. There are only a few of this type of
field in common usage: label fields (for ca_objects, ca_entities, etc.), idno identifier fields (for ca_objects, ca_entities,
etc.), and the extent and extent_units fields (for ca_objects and ca_object_lots).

1.21.3 Limiting your search to a specific metadata elements

Metadata elements are data fields specific to your installation. They may or may not exist in other installations.
Searching on them is similar to searching on intrinsic fields:

<ca_table>.<element code> (for example, ca_objects.description to search
within the "description" element attached to objects.)

You can see a list of all metadata elements (and their codes) available in your configuration in the metadata element
editor available under the “System Configuration” option in the “Manage” menu. (Note: only system administrators
have access to this editor).

In all engines you can perform text searches on any element. In some engines - specifically the MysqlFulltext engine
that is the default engine upon installation - you can also perform specialized searches on certain types of elements.
These searches are described in the following section.

216 Chapter 1. Contents

http://docs.collectiveaccess.org/sphinx/_build/html/searchBrowse/engines.html
http://lucene.apache.org/core/2_9_4/queryparsersyntax.html

CollectiveAccess Documentation, Release 1.8

1.21.4 Limiting searches to specific relationship types

By default, when searching on related content (Eg. search for objects using names of related entities) all relationships
are considered. If you wish to limit your search to specific types of relationships append the relationship type code (or
codes, separated by commas) following the field qualifier and a forward slash. For example this query:

ca_entities.preferred_labels.displayname/depicts:"Cynthia Hopkins")

when used to find objects will return all objects related to Cynthia Hopkins with a “depicts” relationship.

1.21.5 Searching on dates

To search on a date or date range, simply restrict your search to a date range element and then search on the desired
date, using one of the formats described on the date and time format page. You can use any supported format and any
precision - the search engine will find any date (and optionally times) that overlap your search date range. Matching is
by default very loose: items with any overlap will be returned. You can restrict matching to items with dates that are
completely encompassed by your search date by prepending a “#” to your search data. Eg. “#May 10 2005”

1.21.6 Searching on lengths and widths

To search on a length or width, restrict your search to a length or width element and use the desired quantity with units
specified. You must specify units - there is no default no matter what your “units of measurement” preference is set to
(this preference governs display of measurements only). If you want to find items that match a measurement exactly
simply search on the quantity. CA will convert the quantity to the required units for comparison, so even if an item
was measured in inches, a metric search will find it - if the measurements match of course.

ca_objects.width:12in

You can use almost any unit abbreviation listed on the measurement input format page. A few, such as ” for inches
and ‘ for feet have special meaning in the Lucene search syntax and should not be used.

If you want to search for items within a range of measurements, specify the upper and lower bounds of the range with
units. The boundary values should be separated with the word “to” and enclosed in square brackets. Do not put spaces
between the quantity and units. For example:

ca_objects.width:[12in to 24in]

would find all objects with a width between 12 and 24 inches (inclusive). Note that there is no space between “12”
and “in” and “24” and “in”

1.21.7 Searching on numbers

Searching on numbers is very similar to searching on measurements, except that no units are necessary. To search on
an integer or decimal value element restrict your search to the element and specify the number either singly or as a
range. For example, to find objects with a user_ranking value of 5:

ca_objects.user_ranking:5

To find objects with user_ranking values between 1 and 5 (inclusive):

ca_objects.user_ranking:[1 to 5]

1.21. Search Syntax 217

CollectiveAccess Documentation, Release 1.8

1.21.8 Searching on currency

Searching on currency is very similar to searching on numbers, except that a currency type is required. To search on
an currency value element restrict your search to the element and specify the currency amount either singly or as a
range. The amount should be prefixed with a three letter currency specified (eg. EUR for Euros, USD for US dollars)
or one of the supports symbolic specifiers ($, ¥, £ and C). For example, to find objects with an appraisal_value value
of $500:

ca_objects.appraisal_value:$500

To find objects with appraisal_value values $500 or under:

ca_objects.appraisal_value:[$0 to $500]

1.21.9 Searching on geographic locations

When searching on geographic locations, you have two options. You can either search within a bounding box specified
by two latitude/longitude pairs or you can search for anything with a specified distance of a latitude/longitude point.

To search within a bounding box:

ca_objects.georeference:ca_objects.georeference:"[40.341,-71.011 to 45.322,
-75.963]"

Note that the latitudes and longitudes should be decimal and separated with “to”, ” - ” or “..”; the entire range should
be enclosed in both square brackets (“[” and “]) and quotes. If you don’t use quotes on the part of the query up to the
first space will be parts as geographic - not what you want.

To search the area within a specified radius of a point, use this kind of search:

ca_objects.georeference:ca_objects.georeference:"[40.5759250,-73.9911350 ~
5km]"

As with the bounding box query, enclose the search expression in square brackets and quotes. The maximum distance
from the point can be specified in any of the units of length supported by the “Length” attribute type. The above query
will find anything geocoded as being within 5 kilometers of the specified point.

1.21.10 Searching for blank values

As of version 1.4 you may search for item that have no content in a specific field using the special [BLANK] search
term. [BLANK] must be used in conjunction with field specification and must be enclosed in double quotes. The
following example will return all objects lacking descriptions:

ca_objects.description:"[BLANK]"

1.21.11 Access points

Typing ca_objects.description:grafitti every time you want to search for the word “grafitti” in the element “descrip-
tion” gets old quick, and certainly doesn’t look very pretty. To simplify the specification of field and element-limited
searches, CA supports the definition of “access points.” Access points are simply lists of field and element specifica-
tions, defined in the search_indexing.conf configuration file, the names of which may be used in place of the actual
specification. For example, you could do the ‘description’ search like this:

picText:grafitti

assuming that an access point like this was defined in search_indexing.conf:

218 Chapter 1. Contents

CollectiveAccess Documentation, Release 1.8

picText = {
fields = [ca_objects.description]

},

1.21.12 Boolean combination

Search expressions can be combined using the standard boolean “AND” and “OR” operators. Simply join together
your search expressions with the words AND and OR. For example the query

ca_objects.appraisal_value:[$0 to $500] AND ca_objects.description:broken

will find all objects with BOTH an appraisal value of $500 or less and the word “broken” is their description. In
contrast the query

ca_objects.appraisal_value:[$0 to $500] OR ca_objects.description:broken

will find objects with EITHER an appraisal value of $500 or less or the word “broken” in their description.

If you omit AND/OR between two search expressions, AND is assumed.

1.21.13 Wildcards

The asterisk (“*”) is used as a wildcard character. That is, it matches any text. Wildcards may only be used at the end
of a word, to match words that start your search term. For example:

wri*

would find records associated with words starting with the text “wri” Note that if your installation has “stemming”
enabled, many English language words will automatically have their suffixes truncated and a wildcard appended. Thus,
with stemming on, a query for “baking” or “baked” or “baker” would be transformed to “bak*” The stemmer is smart
enough to not attempt truncation of a term you’ve added a wildcard to yourself. If you search for “bake*” the stemmer
will leave it as-is.

1.21.14 Searching on creation and modification dates

You can search on the creation and modification dates of records using the special created and modified access points
together with a valid date/time expression. For example, to find everything created on April 12, 2012 you can search
using:

created:"April 12 2012"

or

created:"4/12/2012"

or with any other valid date/time expression. Any range will work, including ones that specify time and ones that are
by month or year.

You can limit the returned items to those created or modified by a specific user by adding a valid user name after the
access point. For example, to find things modified by user “catherine” on April 2012 you can search using:

modified.catherine:"4/2012"

Note that the user name is separated from the access point by a period (“.”), and that the name of the user is their login
user name, not their full name. Their login user name may be, but is not always, the user’s email address.

1.21. Search Syntax 219

CollectiveAccess Documentation, Release 1.8

1.21.15 Searching on counts

As of version 1.7 it is possible to index the number of relationships and repeating per metadata element for search.
For relationships, counts may be broken out by relationship type, related item type, or both. Count queries are useful
for locating records without specific relationships (eg. find objects without entities related as artist) or with potential
problems (eg. find objects with between 10 and 100 related entities).

By default count indexing is only enabled on object-entity relationships, and broken out by relationship type. You may
configure indexing of other counts in the search_indexing.conf configuration file.

Relationship counts may be queried using the relationship table name followed by the special count field. For example,
in an object search to find all objects related to exactly one entities search for:

ca_objects_x_entities.count:1

To find all objects with exactly one entity related with the relationship type “artist”:

ca_objects_x_entities.count/artist:1

To find all objects without related “artist” entities:

ca_objects_x_entities.count/artist:0

To find all objects with between 2 and 10 related entities:

ca_objects_x_entities.count:[2 to 10]

And to find all objects with between 2 and 10 related “artist” entities:

ca_objects_x_entities.count/artist:[2 to 10]

Note that the the table name used in these examples is “ca_objects_x_entities” rather than “ca_entities”. When
ca_objects_x_entities is indexed with count in search_indexing.conf (it is by default), counts are broken out by re-
lationship type, which is what enables the count queries on relationship type.

You may also index counts on the related record itself (in this case ca_entities), breaking out counts by record type.
Assuming your system is configured with the entity types “individual” and “organization” these queries would be
possible:

Find objects with related organizations:

ca_entities.count/organization:[1 to 100000]

Find objects with only related individuals: <code>

ca_entities.count/individual:[1 to 100000] and ca_entities.count/
organization:0

We use a range with an upper bound of 100000 here to ensure that we include objects with any number of entities.
Expressions with < and > are not currently supported.

Similarly, the number of values present for each metadata element is indexed and may be queried. This can be useful
for locating records that lack a value in a field, or have many values. For example:

To find all object records that lack at least one value in the “dimensions” field:

ca_objects.dimensions.count:0

To find all objects that have more than 5 values in the “dimensions” field:

ca_objects.dimensions.count:[5 to 100000]

As with any other search field specification, you may create more convenient aliases for commonly used counts in
search_indexing.conf by creating an access point.

220 Chapter 1. Contents

CollectiveAccess Documentation, Release 1.8

1.22 Indexing Options

1.23 Search Engines

1.23.1 SQL Search

SQLSearch is an engine that employs regular MySQL tables to create an inverted index stored. This technique was
used in the 0.5x version of CollectiveAccess and provided reasonable performance and scalability combined with
easy deployment (zero-configuration is required). For version 0.6 and 1.0 alternative engines were explored that
leveraged existing code (eg. PHP Lucene, MySQL FULLTEXT, SOLR, etc.). While ultimately workable, none of the
other options combine the deployment and performance characteristics of the inverted index approach. Thus, a new
Unicode-friendly “SQL Search” plugin has been implemented, as of version 1.1, as an alternative to PHP Lucene and
MySQL Fulltext, the other “easy deploy” options. As of version 1.1, SqlSearch is the default search engine option and
as of version 1.3 the only supported “easy deploy” option.

Pros: Performance and scalability are generally good; deployment is effortless

Cons: Indexing can be slow; disk space requirements for indices can be large

Status: Implemented

1.23.2 ElasticSearch

ElasticSearch is a simple, fast and increasingly popular search engine.

Pros: Performance and scalability are very good

Cons: Requires you to run an ElasticSearch installation, which means running a Java application stack. This is often
not an option for installations with limited IT resources.

About ElasticSearch ElasticSearch is an an Open Source (Apache 2), Distributed, RESTful, Search Engine built on
top of Apache Lucene. CollectiveAccess added support in v1.3 and completely overhauled the plugin again in v1.6. It
now uses the official ElasticSearch PHP API and no longer requires running a script to maintain the field mapping for
the search engine.

Note that CollectiveAccess v1.6 only supports ElasticSearch 2.0 or higher!

Setup Please refer to the ElasticSearch website for installation and setup notes. Prebuilt packages are available for
apt/dpkg on Debian/Ubuntu, yum on CentOS/RedHat or homebrew on Mac OS X, and probably your favorite package
manager too!

Once you have ElasticSearch set up, you will have to set aside an index for CollectiveAccess to use. By default that
index is called “collectiveaccess” but that can be changed in the search.conf configuration file if you want to use one
ElasticSearch setup for multiple CollectiveAccess instances. You also have to configure the communication endpoint
you want CollectiveAccess to use. If you’re running ElasticSearch locally with the default settings, the default values
in the config file should work as is: localhost and port 9200.

search_elasticsearch_base_url = http://localhost:9200/ search_elasticsearch_index_name = collectiveaccess Interac-
tion with the CollectiveAccess Providence Installer CollectiveAccess will try to maintain the mapping automatically
and it uses a few local caches to do so. When running the installer, these cache interactions can get a little wonky and
lead to seemingly random exceptions and errors. Try to make sure you delete your ElasticSearch index and clear all
local caches (by deleting the contents of app/tmp) before you run the installer if you have CollectiveAccess configured
to use ElasticSearch before you install.

You could also run the installer using SqlSearch and then switch to ElasticSearch later. Remember to reindex your
database contents after you switch.

1.22. Indexing Options 221

http://localhost:9200/

CollectiveAccess Documentation, Release 1.8

Operation The v1.6 implementation of the ElasticSearch Plugin should take care of mapping maintenance automati-
cally. If you see mapping exceptions piling up in the ElasticSearch log, that’s probably because you’ve changed things
in search_indexing.conf.

One common problem is having different analyzer/tokenizer settings for the same field in different contexts. For
instance, you could have ca_object_lots.idno_stub indexed for ca_objects with no additional settings but then use
INDEX_AS_IDNO and BOOST when indexing it for ca_object_lots. ElasticSearch doesn’t like that. Try streamlining
these settings so that they’re the same for every occurrence of a field in search_indexing.conf. The default config that
ships with Providence should be fine but if you have local changes, keep an eye on the ElasticSearch log and change
your indexing config accordingly.

1.24 Introduction to Media Management

• Supported media formats

• Media attribute

• Media representation bundle

• Media volumes

• Media mirroring

• Media processing

• Media watermarking

• Media display

• Media metadata

• Media embedded metadata

• Media integrity

• Media viewer

• Media import

• Reprocessing media

• Media background processing

1.25 Media Mirroring

1.25.1 Mirroring media uploaded to CollectiveAccess via FTP

All media uploaded to CollectiveAccess are stored locally in web-accessible locations defined in the me-
dia_volumes.conf configuration file. This is usually all you need, but there are a few cases where being able to
automatically copy – or mirror - media to another server can come in handy:

You want to manage audio or video files in CollectiveAccess locally but stream them from a dedicated audio/video
host externally, to save local bandwidth or take advantage of features only streaming hosts can provide.

You want to provide high-availability to media files using multiple servers.

You want to make real-time backups of your media.

222 Chapter 1. Contents

CollectiveAccess Documentation, Release 1.8

CollectiveAccess supports mirroring via FTP (“File Transfer Protocol”). FTP is a standard for moving files between
servers on the Internet. When FTP mirroring is enabled, every time you upload a new media file the file and its deriva-
tives will be automatically copied using FTP to one or more remote servers. The copying happens in the background
so you need not wait for the file transfers to complete before continuing your work. Files of any size (subject to disk
space limitations of the mirror servers, of course) may be mirrored.

Note: The media mirroring system is very old. It was actually part of the 0.5x code base and was originally intended
to move files to Adobe Flash Streaming Server.

At the time everyone still used FTP to move files.

Additionally, CA can be configured to automatically use a mirror to serve media internally, if one is available. In this
case when a media file is first uploaded it will be served from the local location. Once mirroring is complete (for large
files or limited bandwidth connections, this can take a while) CA will automatically shift over to using the mirror.

Note that the CA mirroring system will automatically remove media from mirrors if they are removed from the local
system. This prevents waste of disk space on mirror servers. You should not rely upon mirrors for backups of
accidentally deleted files. Use a traditional data backup solution instead.

Configuring mirroring

Mirroring is configured on a per-volume basis. All media written to a mirrored volume are mirrored. If you want to
mirror a specific type of file then you should create a separate volume for that type of file and configure the media
processing system (in media_processing.conf) to use the volume. The default CA configuration has definitions for
media-specific volumes that should work fine for most installations.

Within a given volume, to enable mirroring add a “mirrors” list directive. The mirrors list should contain a series of
“mirror codes” (unique alphanumeric identifiers for the mirror that you define), each of which has a list of configuration
values for the mirror. A typical mirror setup to mirror all media added to the “images” volume (taken from the CA
default configuration) looks like this:

images = {
hostname = <site_hostname>,
protocol = <site_protocol>,
urlPath = <ca_media_url_root>/images,
absolutePath = <ca_base_dir>/<ca_media_url_root>/images,
writeable = 1,
description = Images,

accessUsingMirror = my_mirror,

mirrors = {
my_mirror = {

method = ftp,
hostname = ftp.mysite.org,
username = my_ftp_login_name,
password = my_password,
directory = /usr/home/mysite/public_html/images,
passive = 1,
accessProtocol = http,
accessHostname = www.mysite.org,
accessUrlPath = /images

}
}

}

1.25. Media Mirroring 223

CollectiveAccess Documentation, Release 1.8

Note the accessUsingMirror directive. This tells CA what mirror to use locally if it is available. If you omit this
directive the mirror will receive files from CA but will not actually be used by CA to serve media.

For further details about the mirror configuration see FTP Mirror configuration.

1.26 Display Template Syntax

• Defining templates

• Template syntax

• Placeholder options

• Pulling metadata through a relationship

• Formatting templates with <unit>

• Contextual tags: <more> and <between>

• Conditional tags: <ifdef>, <ifnotdef>, <ifcount>, <if>

• Even more conditional: the <case> tag

• Expressions

• Formatting hierarchical displays

• Making links to other records

• Using HTML

• Special placeholders

• Splitting apart a date range into separate data points

Display templates are used to format data from bundles (elements of metadata stored in CollectiveAccess) for display
on screen, output into reports and presentation in search results. When no display template is defined CollectiveAccess
defaults to displaying bundle data in the simplest possible way, typically as a semicolon-delimited list of values. For
bundles comprised of a single value (Eg. a simple text metadata element) this is often enough. For complex bundles
consisting of several discrete values – a mailing address for example – a template is usually required to adequately
format the value. Other cases where bundle display templates are called for:

• To define styling, such as headings, bold and italics around bundle elements.

• To format and conditionally include delimiters and suffixes between values in a complex bundle. For example,
in a bundle with width, length and height dimensions, “x” delimiters can be placed between each dimension
value. A display can be used to output values in a width/length/height order (or any other order). Thus a bundle
with length=24”, height=8” and width=3” can be output as 3” x 24” x 8” . . . or 3”W x 24”L x 8”H . . . or 3”W
x 8”H if length happens to be undefined (because displays can intelligently omit the delimiter and suffix).

• To display data attached to related items. For example to display both the name and life dates for related entities
a bundle display template can be used to extract and format the data. Any data attached to the related entity can
be displayed.

• To display related data traversing any number of intervening relationships. As a simple example, imagine that
you have an object related to a collection, and the collection is related to a donor. It’s not necessary to catalog the
donor directly on the object in order to display the donor’s address there, because it’s possible to pull the address
through the intervening collection relationship. Another example prevalent in film and performance archives, is
that objects can be related to “works” (occurrences) which in turn have entity relationships (“director”, “actor”,

224 Chapter 1. Contents

CollectiveAccess Documentation, Release 1.8

“choreographer”). A display template can display object information alongside entity data related to a work that
is related to the object.

• To apply one of several display formats using expressions conditional on one or more data values.

Display templates are also used extensively by Pawtucket 2.0 for formatting in themes. They are the preferred format-
ting method in Pawtucket 2.0, although mixed HTML/PHP coding is still supported.

1.26.1 Defining templates

Default display templates can be defined for metadata elements as part of their configuration. Default formatting can
be overridden by additional context-specific templates within a display or user interface.

The default template for a metadata element can be set in the configuration interface. Display and user interface
related templates may be set in their respective configuration editors on a per-bundle basis. When a template is defined
for a metadata element within a display or editor user interface it will take precedence over templates defined in the
element’s configuration.

1.26.2 Template syntax

At their most basic, templates are simply text with placeholders to be replaced by bundle values. Placeholders always
start with a caret (“^”) character followed by a bundle specifier, an unambiguous identifier for a metadata element. For
example, if you have a metadata element in an object record with the element code description and wish to preface the
value of the element with the label “Description:” the template would be:

Description: ^ca_objects.description

where ca_objects indicates an object record and description is the metadata element code.

If the value of the description metadata element happens to be empty, this template will cause the label “Description:”
to be awkwardly displayed without a trailing value. To avoid unwanted blank spaces a display template can be made
conditional on the presence of a value within a field. A template for description that only displays something if there’s
a description available would look like this:

<ifdef code="ca_objects.description">Description: ^ca_objects.description</
ifdef>

Everything between the <ifdef> and </ifdef> is only output for the corresponding bundle (specified without the ^ in
the <ifdef> tag because it’s a code, not a placeholder in this context) when it actually has a value.

Conditional output can be used for more than just labels. For dimensions and other collections of quantities, condi-
tional output can be used to deal with variations when not all values are available in all cases. For example, let’s say
you have a metadata container on an object record named “dimensions” with three sub-elements: width, height and
depth, all of which are elements of type Length. Displaying the container ca_objects.dimensions without a template
would result in three values separated with semicolons, which are the default delimiter:

12"; 6"; 9"

(we assume here that we’re displaying in English units)

To make it clearer we can format the container using this template:

^ca_objects.dimensions.width W x ^ca_objects.dimensions.height H x
^ca_objects.dimensions.depth D

This will display:

12" W x 6" H x 9" D

1.26. Display Template Syntax 225

CollectiveAccess Documentation, Release 1.8

As you can see, a special syntax is used to articulate container elements. It is no longer just ^ca_objects.dimensions in
our example, but rather the code for the parent container along with the specific sub-element you’ve chosen to display.

If the depth value happens to be blank in some cases then the output would sometimes be like this:

12" W x 6" H x D

To rectify this we can use conditional output:

<ifdef code="ca_objects.dimensions.width">^ca_objects.dimensions.width W x</ifdef>
→˓<ifdef code="ca_objects.dimensions.height">
^ca_objects.dimensions.height H x</ifdef> <ifdef code="ca_objects.dimensions.depth">^
→˓ca_objects.dimensions.depth D</ifdef>

Note that we can also use conditionals to close up the space between ^ca_objects.dimensions.width and the “W”,
^ca_objects.dimensions.height and “H” and ^ca_objects.dimensions.depth and “D”. Normally space is required be-
tween the placeholder and any non-placeholder text to make clear where the placeholder ends. With a conditional you
can keep the placeholder separate from other text without resorting to spaces, as in this example:

^ca_objects.dimensions.width<ifdef code="ca_objects.dimensions.width">W x</ifdef> ^ca_
→˓objects.dimensions.height
<ifdef code="ca_objects.dimensions.height">H x</ifdef> ^ca_objects.dimensions.depth
→˓<ifdef code="ca_objects.dimensions.depth">D</ifdef>

If you need to make part of your template conditional upon more than one value being set simply list the placeholder
names in the “code” value separated by commas:

<ifdef code="ca_objects.dimensions.width,ca_objects.dimensions.height,ca_objects.
→˓dimensions.depth">Dimensions are: </ifdef>
^ca_objects.dimensions.width<ifdef code="ca_objects.dimensions.width">W
x</ifde> ^ca_objects.dimensions.height<ifdef code="ca_objects.dimensions.height">
H x</ifdef> ^ca_objects.dimensions.depth<ifdef code="ca_objects.dimensions.depth">D</
→˓ifdef>

“Dimensions are:” will only be output if width, height and depth all have values. The text can be output if any of the
values in the code list are set by separating the placeholder names with “|” (aka. “pipe”) characters:

<ifdef code="ca_objects.dimensions.width|ca_objects.dimensions.height|ca_objects.
→˓dimensions.depth">Dimensions are: </ifdef>
^ca_objects.dimensions.width<ifdef code="ca_objects.dimensions.width">W x</ifdef>
^ca_objects.dimensions.height<ifdef code="ca_objects.dimensions.height">H x</ifdef>
^ca_objects.dimensions.depth<ifdef code="ca_objects.dimensions.depth">D</ifdef>

There are some cases in which you may need to make part of a template conditional upon a value or values not being
defined. The <ifnotdef> tag will do this in an analogous manner to <ifdef>. For example, if you want to output a “No
dimensions” message when no values are defined:

<ifnotdef code="ca_objects.dimensions.width,ca_objects.dimensions.height,ca_objects.
→˓dimensions.depth">No dimensions are set</ifnotdef>
^ca_objects.dimensions.width<ifdef code="ca_objects.dimensions.width">W x</ifdef> ^ca_
→˓objects.dimensions.height
<ifdef code="ca_objects.dimensions.height">H x</ifdef> ^ca_objects.dimensions.depth
→˓<ifdef code="ca_objects.dimensions.depth">D</ifdef>

226 Chapter 1. Contents

CollectiveAccess Documentation, Release 1.8

1.26.3 Placeholder options

Placeholder values may be modified by options appended as a series of named parameters. Options are separated from
the placeholder with a “%” character and listed in <name>=<value> pairs delimited by “&” or “%” characters.((“&”
are used in older templates, but now may be used interchangeably with “%”). For example:

^ca_objects.hierarchy.preferred_labels.name%maxLevelsFromBottom=4&delimiter=__

will output a list of hierarchical object titles consisting of the bottom-most four titles separated by arrows. If those
options were not set they would revert to defaults, in this case the entire hierarchy delimited by semicolons.

Any number of options may be appended to a placeholder.

Note that spaces are not allowed in options as they are used to separate placeholders. You can use URL encoding (eg.
%20 for a space) or a underscores in place of spaces.

The following options may be used to format the text value of any placeholder:

Placeholder Description
toUpper Forces text to all upper case when set to a non-zero value.
toLower Forces text to all lower case when set to a non-zero value.
makeFirstUpper Make first character of text upper case when set to a non-zero value.
useSingular Converts label to singular when set to a non-zero value.
trim Trim white space from beginning and end of value.
start Trim the beginning of the text such that it begins at the specified character; ex. “This

is a test” with start=2 will be transformed to “is is a test”
length Truncate the text to the specified number of characters. Can be used with the start op-

tion to extract sections of text, or alone to ensure text does not go beyond a maximum
length.

truncate Truncates the text to the specified maximum length. The equivalent of setting the start
option to zero and length option to the truncation length.

ellipsis Add an ellipsis (“. . . ”) to truncated text when set to a non-zero value. The resulting
text will be the specified length including the three character ellipsis. That is, text
truncated to 12 characters will include 9 characters of text and 3 characters of ellipsis.

For simple true/false options such as toUpper you may omit the “=” and value. These two templates are the same:

^ca_objects.preferred_labels.name%trim=1

and

^ca_objects.preferred_labels.name%trim

1.26.4 Pulling metadata through a relationship

In the previous examples, data displayed is always from a particular object record at hand – the “primary” record.
Templates are always processed relative to to the primary record. If you are formatting object search results, for
example, your template will be repeatedly evaluated for each object in the result set, with each object taking its turn
as primary. It’s obvious but still worth stating: placeholders referring directly to data in the primary (^ca_objects.idno
for example) derive their values from the primary. If a bundle repeats for a record, you may get multiple values, but
all values referring to the primary will always be taken from the primary. Any record can be primary. Primary-ness is
simply the context is which a template is processed.

It is often necessary to display metadata from records related to the primary. For example, you might want to display
entities related to an object (the primary) displaying each entity’s lifespan and birthplace next to their name. Or a
display the related collections, with name, access restrictions and availability information. Or perhaps a display of
objects related to the current primary object.

1.26. Display Template Syntax 227

CollectiveAccess Documentation, Release 1.8

For simple cases displaying related data is similar to primary data. For placeholders that refer to non-
primary data CollectiveAccess will look for records of that kind directly related to the primary. For a
^ca_entities.preferred_labels.displayname placeholder in a display for object results, CollectiveAccess will pull the
names of all entities directly related to the primary object. Using our sample data:

^ca_entities.preferred_labels.displayname

will result in a list of display names for related entities, separated by semicolons (the default delimiter):

George Tilyou; Elmer Dundy

To pull data from related records of the same kind as the primary (Ex. objects related to an object) add “related” to the
bundle specifier:

^ca_objects.related.preferred_labels.displayname

With our sample data this will result in the title of the object related to the primary being returned. You can include
“related” in specifiers for any kind of related record but it is only required when things would otherwise be ambiguous
without it.

You may pull any data in the related entity records using similarly constructed placeholders. For example, this tem-
plate:

^ca_entities.preferred_labels.displayname (Life dates: ^ca_entities.
life_span)

will return

George Tilyou; Elmer Dundy; (Life dates: 1865 - 1914; 1862 - 1907)

Each placeholder is evaluated separately and a list of values returned in its place. To format several related data
elements in a block, as well as to display indirectly related data (such as the related entity’s birthplaces), set custom
delimiters and other options a new template directive, the <unit> tag, is needed.

1.26.5 Formatting templates with <unit>

<unit> tags allow you to break your templates into sub-templates that are evaluated independently and then reassem-
bled for final output. Using the <unit> relativeTo attribute, the primary record of the template may be transformed
into one or more related records, repeating values from the primary (e.g. values in a repeating container) or a set of
hierarchical values, and the sub-template evaluated for each.

<unit>’s and relativeTo enable a host of useful (and often complex) formatting transformations:

• When a record has repeating containers. Say you have a repeating address container on an entity record to
accommodate multiple address changes. If you format your display template without specifying that each
instance of the container needs to be displayed as a unit the result will be a single address in return, no matter how
many addresses are entered, and each placeholder will contain the values for all of the addresses - a nonsensical
way to display an address list. Wrapping the address portion of the template in <unit> tags and specifying
that it be evaluated relative to the repeating address element, rather than the primary record itself, will force
the template contained within to be evaluated once per repeating address value, resulting in an independently
formatted value for each address. Ex.

<unit relativeTo="ca_entities.address">
^ca_entities.address.street_address
^ca_entities.address.city, ^ca_entities.
→˓address.state ^ca_entities.address.zip_code

</unit>

The relativeTo option in the <unit> tag forces the sub-template to be evaluated once per address value in the primary
record.

228 Chapter 1. Contents

CollectiveAccess Documentation, Release 1.8

• When you need to present more than one data element from related records side-by-side. In the previous section
we saw how different placeholders referencing the same related records always return separate lists, one per
placeholder. When displayed side-by-side the result is a series of lists rather than the discrete blocks of output
for each related item that are more typically desired. <unit> tags make it possible to define sub-templates that are
evaluated repeatedly, as many times as there are related records. Our example in the previous section reformatted
with <unit> tags like this:

<unit relativeTo="ca_entities">^ca_entities.preferred_labels.displayname (Life
dates: ^ca_entities.life_span)</unit>

results in this output:

George Tilyou (Life dates: 1865 - 1914); Elmer Dundy (Life dates: 1862 -
1907)

Here the relativeTo option in the <unit> tag shifts the primary record to be each related entity in turn, in the sub-
template defined by the <unit> only.

• When you need to set display options for part of a template. <unit> tags provide options to modify output for
sub-templates. You can set the delimiter for repeating values using the delimiter option, or restrict the related
items displayed by relationship type or related item type using restrictToRelationshipTypes and restrictToTypes
respectively (or their counterparts excludeRelationshipTypes and excludeTypes). (You can also set options
on individual placeholders, but declaring options on <unit> tags is usually more convenient and always more
readable). Ex.

<unit relativeTo="ca_entities" restrictToRelationshipTypes="actor, director, producer
→˓">
^ca_entities.preferred_labels.displayname (Life dates: ^ca_entities.life_span)
</unit>

• When you need to display metadata relating to hierarchical records. Without the <unit> tag, there’s no way to
individually list child records and accompanying metadata in a display. With the <unit> tag you can display
parent and/or child records and hierarchical paths as discrete, complex units, by making the unit relativeTo the
hierarchical record set. Ex.

<unit relativeTo="ca_list_items.hierarchy"><p>^ca_list_items.preferred_labels.
name_plural (ca_list_items.idno)</p></unit>

Here the relativeTo option in the <unit> tag shifts the primary record to be each related list item in the hierarchy in
turn, in the sub-template defined by the <unit> only.

• When you need to pull metadata through an indirect relationship. Without the <unit> tag only metadata from
records directly related to the primary can be displayed in a template. In our sample data, this means only the
entities related to the primary object can be displayed. The birthplace data related to each entity cannot. By
using <unit> tags nested within one another and specifying the relativeTo option we can shift the primary record
for a sub-template across any number of relationships. We might call this “Six Degrees of Kevin Bacon for
CollectiveAccess” where A is related to B which is related to C. For example, if the primary is an object, and
you need to display place data from entities related to objects (not places related directly to the object), the
following template would do the job:

Object is ^ca_objects.preferred_labels.name;
Entities are: <unit relativeTo="ca_entities">^ca_entities.preferred_labels.displayname
(Birthplace: <unit relativeTo="ca_places">^ca_places.preferred_labels.name</unit></
→˓unit>

Each unit shifts the primary by one relational “jump.” Nesting <units> allows shifts to accumulate because they are
always evaluated relative to their context. Thus entities related to objects are grabbed, and then places related to those
entities.

<unit> tags may take any of the following attributes:

1.26. Display Template Syntax 229

CollectiveAccess Documentation, Release 1.8

Attribute Description Default Supported
relativeTo Transforms the primary

record of the template or
enclosing <unit> (when
<unit>’s are nested) to
a set of related records,
hierarchically related
records or repeating
values.

None; must be set

restrictToTypes For <unit>’s relativeTo
a relationship (eg. rel-
ativeTo=’ca_entities’)
or hierarchy (eg. rela-
tiveTo=’ca_objects.hierarchy’,
rela-
tiveTo=’ca_objects.parent’,
rela-
tiveTo=’ca_objects.siblings’,
rela-
tiveTo=’ca_objects.children’)
will restrict the record set
to those of the specified
types. Use type identifiers
and list multiple types
separated by commas.

None – no restriction

restrictToRelationshipTypes For <unit>’s relativeTo
a relationship (eg. rel-
ativeTo=’ca_entities’)
will restrict the record
set to those related with
the specified relationship
types. Use relationship
type codes and list mul-
tiple codes separated by
commas.

None – no restriction

excludeTypes For <unit>’s relativeTo
a relationship (eg. rel-
ativeTo=’ca_entities’)
or hierarchy (eg. rela-
tiveTo=’ca_objects.hierarchy’,
rela-
tiveTo=’ca_objects.parent’,
rela-
tiveTo=’ca_objects.siblings’,
rela-
tiveTo=’ca_objects.children’)
will restrict the record
set to those NOT of the
specified types. Use
type identifiers and list
multiple types separated
by commas.

None – no restriction

excludeRelationshipTypes For <unit>’s relativeTo a
relationship (eg. rela-
tiveTo=’ca_entities’) will
restrict the record set to
those related with rela-
tionship types NOT in the
list. Use relationship type
codes and list multiple
codes separated by com-
mas.

None – no restriction

sort One or more bundle spec-
ifiers to sort record set on.
Specifiers should be rele-
vant to the kind of records
retrieved by the relativeTo
value.

None

sortDirection Direction of sort. Should
be either ASC (ascending)
or DESC (descending)

ASC

skipIfExpression An expression to evalu-
ate. If true the <unit> will
be skipped and no output
generated. It is neces-
sary to escape (prepend a
“”) the surrounding quotes
when using expressions.

None

skipWhen
unique When set to a non-zero

value repeat values in the
unit will be removed.

FALSE

start For repeating values the
index of the first value to
return. Indices are zero-
based. Ex. to start with
the second value, set start
to 1.

0

length The maximum number of
values to return. If not set
all values are returned.

none

unique Remove duplicate values
in unit using direct string
comparison. If not set all
values are returned.

0

aggregateUnique Remove duplicate values
in units by comparing in-
dividual values prior to
conversion to strings. The
difference between this
and unique is subtle. Take,
for example, a unit that
formats lists of authors
from several related ob-
jects. The unique option
will eliminate only those
lists of authors that are
string-wise identical If the
authors are in different or-
ders for different objects
they will be considered
unique values. The aggre-
gateUnique option consid-
ers the values used to cre-
ate those lists, rather than
the resulting strings. If
the array of returned val-
ues for a unit, prior to con-
version to a string, is the
same, it is considered a
duplicate no matter the or-
der of the authors in the
resulting string. Put sim-
ply, aggregateUnique ap-
plies a more aggressive
de-duplication process.

0

omitBlanks Remove blank values
from returned set. The
default behavior is to
include blanks. Omitting
blank values is often
desirable when formatting
values for display.

0 Version 1.7.9

filter Version 1.7.9
filterNonPrimaryRepresentationsFor units relative to

ca_object_representations,
controls whether non-
primary representations
are displayed. Default
is “yes” non-primary
representations are not
displayed. Set to 0 or “no”
to display non-primary
representations.

1

230 Chapter 1. Contents

CollectiveAccess Documentation, Release 1.8

The <unit> tag presents many opportunities for complex display formatting which are explained in more detail, along
with examples, here.

You can limit the number of values returned from a <unit> operating on a repeating value using the start and limit
unit attributes described previously. You can display text indicating how many values were not shown using the
<whenunitomits> tag following a <unit>. For example, to show the first 5 related entities and then a message with the
total number:

<code>
<unit relativeTo="ca_entities" delimiter=", " start="0" length="5">^ca_entities.
→˓preferred_labels.displayname</unit><whenunitomits> and ^omitcount more</
→˓whenunitomits>
</code>

The ^omitcount placeholder can be used within the <unit> or <whenunitomits> tag. The <whenunitomits> tag always
refers to the number of values omitted in the <unit> before it in the template and will be suppressed when no values
from the previous <unit> are hidden.

1.26.6 Contextual tags: <more> and <between>

Templates using <ifdef> and <ifnotdef> can get long and unruly when they include many elements dependent on the
state of multiple placeholders. To help make such templates more manageable two tags are available that control
output based solely upon their position in a template, obviating the need for long lists of placeholder names.

The <more> tag will output content if any placeholders following it have a value. Thus this template:

^ca_objects.description <more>
The source for this was: </
more>^ca_objects.description_source

will output this (assuming both description and description_source are set to “A metal pan” and “1978 auction cata-
logue” respectively):

A metal pan
The source for this was: 1978 auction catalogue

If description_source was empty the output would be:

A metal pan

The <between> tag will output content if any placeholders before it in the template and the placeholder directly
following it in the template have values. This makes delimiting lists of values more compact than options using
<ifdef>:

^ca_objects.dimensions.width <between>x</between> ^ca_objects.dimensions.
height <between>x</between> ^depth

The output of this would be the defined dimensions with a single “x” delimiter between each pair.

1.26.7 Conditional tags: <ifdef>, <ifnotdef>, <ifcount>, <if>

As mentioned earlier you can make display of portions of your template contingent upon specified conditions by
surrounding part of the template with <ifdef> and <ifnotdef> tags. Both tags take a “code” attribute containing one
or more bundle specifiers. If the value for the bundle is not empty <ifdef> will display the portion of the template it
encloses. Conversely, if the value is empty <ifnotdef> will display the content it encloses.

For example:

1.26. Display Template Syntax 231

CollectiveAccess Documentation, Release 1.8

Title: ^ca_objects.preferred_labels.name <ifdef code="ca_objects.
description">Description: ^ca_objects.description</ifdef>

Note that the specifier in the code attribute is not a placeholder and therefore does not take a “^” prefix.

You can make <ifdef> and <ifnotdef> contingent upon more than one bundle by listing them in the code attribute
separated by commas or pipes (“|”). When separated by commas, all of the bundles must be defined (<ifdef>) or not
defined (<ifnotdef>) for the tag to display content. When separated by pipes, any of the bundles defined (<ifdef>) or
not defined (<ifnotdef>) will cause the tag to display content.

The <ifcount> tag controls display of content based upon the number of values available from the bundle specifier in
code. It is useful when you wish to only show content when the number of values a bundle has is within a range. For
example, if you wish to show a list of related entities only when there are between 2 and 5 relationships:

<ifcount code="ca_entities.related" min="2" max="5">Related entities:
^ca_entities.preferred_labels.displayname</ifcount>

You can show content whenever the count is greater than a number by omitting the max attribute:

<ifcount code="ca_entities.related" min="2">Related entities: ^ca_entities.
preferred_labels.displayname</ifcount>

If the min attribute is omitted it is assumed to be zero.

To only show content when the count is a specific number set both min and max to the same number:

<ifcount code="ca_entities.related" min="1" max="1">Related entity:
^ca_entities.preferred_labels.displayname</ifcount>

The <if> tag provides maximum control by using expressions to determine when content is displayed. For example,
to output the display only if “current” is selected from the type drop-down in a repeating credit line container:

<unit relativeTo="ca_objects.credit_line"><if rule=\"^credit_type =~ /current/\">^ca_
→˓objects.credit_line.credit_text
(^ca_objects.credit_line.credit_type)</if></unit>

The rule attribute must be set to a valid expression, which can use any valid placeholder available in the template, and
must be enclosed in escaped (prepended “”) quotes to ensure that it is evaluated correctly.

Both <ifcount> and <ifdef> include blank values in their evaluation. From version 1.7.9 blank values may suppressed
by setting the optional “omitBlanks” to a non-zero value. This is often useful when formatting data for display. If
“omitBlanks” is set, <ifcount> will return the number of non-blank values; <ifdef> will evaluate as true only if the
bundle has at least one non-blank value. Note that <if> does not support the “omitBlanks” option. You must filter
blank values in the expression.

1.26.8 Even more conditional: the <case> tag

Sometimes you need to to choose from one of several templates based upon varying criteria. For instance, when listing
entities related to an object you might want to vary the text before the list with respect to the number of entities being
listed. There are ways to do this with display templates, but the cleanest way is with a <case> tag:

<case>
<ifcount code="ca_entities.related" max="0">No related entities</ifcount>
<ifcount code="ca_entities.related" min="1" max="1">Related entity: ^ca_

→˓entities.preferred_labels.name</ifcount>
<ifcount code="ca_entities.related" min="2">Related entities: ^ca_entities.

→˓preferred_labels.name%delimiter=,_</ifcount>
</case>

232 Chapter 1. Contents

CollectiveAccess Documentation, Release 1.8

The <case> tag evaluates each <ifcount> tag in order and stops at the first one that results in output. You can include
templates beginning with <ifdef>, <ifnotdef> and <if> as well as <ifcount>. If a <unit> tag is included as the last
template in a <case> it will be used as the default in case no other template results in output.

Because <case> tags stop evaluating as soon as they find a template with output they are generally the best performing
way to choose a template from a list of possibilities.

1.26.9 Expressions

It’s also possible to output the result of expressions as-is. A use case for this is making certain statistics about your
metadata searchable. For instance, you could use Prepopulate to always keep the current number of entity relationships
for your objects in a hidden (but searchable and sortable) field.

Usage of the expression tag is simple: Anything inside the tag is treated as an expression. You can use your typical
caret-prefixed bundle placeholders and even unit tags. Unit tags get evaluated/replaced first when CollectiveAccess
runs display templates, so you can use the result of a unit tag in your expression. Here are a few basic examples:

<expression>5 + 4</expression> <expression>length(^ca_objects.
preferred_labels)</expression>

This one outputs related entity names and their string lengths:

<unit relativeTo="ca_entities">^ca_entities.preferred_labels,
<expression>length(^ca_entities.preferred_labels)</expression></unit>

The following counts the number of entity relationships for the current record. We use a unit tag to generate the
parameters for the sizeof function.

<expression>sizeof(<unit relativeTo="ca_entities" delimiter=",">^ca_entities.
entity_id</unit>)</expression>

This one calculates the age of Alan Turing:

<expression>age("23 June 1912", "7 June 1954")</expression>

1.26.10 Formatting hierarchical displays

Many types of records can be arranged hierarchically. To get some or all of the hierarchy for display use a hierarchical
bundle specifier. This is just a normal specifier with a hierarchical modifier (hierarchy, parent, children) added.

For example, for an object primary, a ^ca_objects.hierarchy.preferred_labels.name placeholder will return the names
of all objects in the hierarchy from top to bottom. You’ll probably want to set a delimiter between each item in the
hierarchy. You can do so by adding a placeholder option: append a percent sign and delimiter=<my delimiter> to the
bundle specifier, like so:

^ca_objects.hierarchy.preferred_labels.name%delimiter=__

When setting the delimiter, underscores are used in place of spaces. Spaces are used to delimit individual bundle
specifiers, so you can’t have the delimiter floating out past a space associated with the specifier. The underscores will
be converted to spaces for display.

You can get more control over hierarchy displays using a <unit> set relative to a hierarchy. For our object primary:

<unit relativeTo="ca_objects.hierarchy">^ca_objects.preferred_labels.name
(^ca_objects.idno)</unit>

will evaluate the <unit> for each record in the hierarchy in turn set to primary. Related data can be accessed as well,
and additional <unit>’s can be specified within.

1.26. Display Template Syntax 233

CollectiveAccess Documentation, Release 1.8

The parent and children modifiers work similarly to hierarchy but return the immediate parent of a record or its
immediate children respectively.

There are a number of placeholder options that can be used to modify how hierarchical data is displayed:

Option Description Default
delimiter Text to use as delimiter for multiple values. ;
maxLevelsFromTop Restrict the number of levels returned to the top-most beginning

with the root.
None

maxLevelsFromBottomRestrict the number of levels returned to the top-most beginning
with the root.

None

hierarchyDirection Order in which to return hierarchical levels. Set to either “asc”
or “desc”. “asc”ending returns hierarchy beginning with the root;
“desc”ending begins with the child furthest from the root.

asc

allDescendants Return all items from the full depth of the hierarchy when fetching
children using the children modifier. By default only immediate
children are returned.

FALSE

1.26.11 Making links to other records

The <l> tag may be used to create links within the template. The links will always point to the primary record. In
Providence the link will lead to the editing interface for the record; in Pawtucket the link will be to the detail display
for the record. It is possible to write plugins that override this behavior and create other sorts of links.

Any stretch of the template may be made into a link. For example, assuming the primary is an entity:

<l>^ca_entities.preferred_labels.displayname</l> <ifdef code="ca_entities.address.
→˓address1">(</ifdef>^ca_entities.address.address1
<ifdef code="ca_entities.address.address1">)</ifdef>

Clicking on the entity name in Providence would take a cataloguer to the editor for the entity record; in Providence it
leads to the detail for the entity.

Links always point to the primary record. If you use <l> tags within a <unit> the links will be to the primary within
the <unit>.

1.26.12 Using HTML

You can freely use HTML tags for formatting within your templates, so long you follow the rules and use well-
formed markup. Be sure to close any tag you open. The special template tags such as <ifdef> count in terms of
well-formedness even though they don’t display. This, for instance, is not correct and will render unpredictably:

<l>^ca_occurrences.preferred_labels.names</l> <ifdef code="ca_occurrences.exhibit_date
→˓">(Dates: </ifdef>^ca_occurrences.exhibit_date
<ifdef code="ca_occurrences.exhibit_date">)</ifdef> ^ca_occurrences.description

Notice that the tag in the first <ifdef> is not closed before the closing </ifdef>, producing invalid markup. There
is a tag later on but this too is taken on its own due to the enclosing <ifdef> tags. The correct way to write this
template is:

<l>^ca_occurrences.preferred_labels.names</l> <ifdef code="ca_occurrences.exhibit_date
→˓">(Dates: ^ca_occurrences.exhibit_date
</ifdef> ^ca_occurrences.description

234 Chapter 1. Contents

CollectiveAccess Documentation, Release 1.8

1.26.13 Special placeholders

There are a few placeholders that have special meanings for certain kinds of primary records:

Placeholder Description
^date Displays the current date. Valid in any template regardless of the kind of primary.

Date is formatted as “day month year” (ex. “10 January 2014”) unless a format is
specified using the format placeholder option. The option takes a PHP date()-style
formatting string. See [1]. (Ex. ^date%format=c)

^relationship_typename Displays the name of the relationship type when the primary is a relationship record
such as ca_objects_x_entities. Note that templates pulling related records in bundle
displays are evaluated relative to the primary representing the relationship, not the
related record. Thus this and the other ^relationship_* placeholders are available by
default when pulling related data in bundle displays

^relationship_type_id The internal numeric type_id for the relationship type when the primary is a relation-
ship record such as ca_objects_x_entities.

^relationship_typecode The alphanumeric code for the relationship type when the primary is a relationship
record such as ca_objects_x_entities.

^primary Displays the name of the primary for the template or current <unit> sub-template.
This can be useful for debugging.

^count Displays the number of values in the current primary for the template or current
<unit> sub-template.

^index Displays the one-based index of the current value in the primary or <unit> sub-
template. As a <unit> iterates through each value ^index will increment by one until
it reaches ^count.

As of version 1.7.9 there are also several special placeholders available for object representations that return pre-
formatted media-specific metadata. These are typically used to format display text in lists of object representations:

1.26. Display Template Syntax 235

CollectiveAccess Documentation, Release 1.8

Placeholder Description Options Examples
^ca_object_representations.transcription_countNumber of user-generated transcriptions at-

tached to the representation.
1

^ca_object_representations.page_countNumber of pages in a multipage document.
Will be null when not applicable.

10

^ca_object_representations.preview_countNumber of previews available for a multi-
page document ot timebased media. Will be
null when not applicable. This is a synonym
for page_count

10

^ca_object_representations.media_dimensionsPixel dimensions for the media, formatted
for display.

version = version to
use. Default is orig-
inal.

1024p x 2048p

^ca_object_representations.media_durationDuration of timebased media, formatted for
display.

durationFormat =
Sets format of du-
ration. Use “delim-
ited” for delimited
format, “hms” for
hours/minutes/seconds,
“hm” for
hours/minutes
and “seconds” for
output in seconds.
Default is “hms”.
version = version
to use. Default is
original.

1h 24m 10s

^ca_object_representations.media_classGeneral type of originally uploaded media.
Possible values are “image”, “video”, “au-
dio”, and “document”.

image

^ca_object_representations.media_formatFormat of originally uploaded media, for
display.

JPEG, TIFF

^ca_object_representations.media_filesizeFile size of media, formatted for display. version = version to
use. Default is orig-
inal.

43.2mb

^ca_object_representations.media_colorspaceColorspace of media, formatted for display. version = version to
use. Default is orig-
inal.

RGB, CMYK

^ca_object_representations.media_resolutionPixel resolution of media, formatted for dis-
play. May not be available for all file for-
mats

version = version to
use. Default is orig-
inal.

300ppi

^ca_object_representations.media_bitdepthBit depth of media, formatted for display.
May not be available for all file formats.

version = version to
use. Default is orig-
inal.

8bpp

^ca_object_representations.media_center_xX-coordinate of user-set center crop point
for image media. Coordinate is a decimal
fraction of the width of the image.

0.43

^ca_object_representations.media_center_yY-coordinate of user-set center crop point
for image media. Coordinate is a decimal
fraction of the width of the image.

0.22

236 Chapter 1. Contents

CollectiveAccess Documentation, Release 1.8

1.26.14 Splitting apart a date range into separate data points

Single date values that are expressed as ranges (e.g. 2000-2018) can be parsed into separate data points for start and
end dates. For example, if you wish to export to MS Excel and would like distinct columns for the first and last dates
in the range. You can do so with the following syntax:

^ca_objects.your_date_element_code%start_as_iso8601=1
^ca_objects.your_date_element_code%end_as_iso8601=1

1.27 PDF Output

1.28 Generating Labels

1.29 Tracking current object location

• Overview

• Tracking approaches

• Configuration

• The chronology bundle

• The current contents bundle

• Inspector display

• Display in templates

• Searching on current values

• Browsing on current values

• Home locations

• Updating the cache

Note: The system for location tracking was completely rebuilt for version 1.7.9 with a new, more general, con-
figuration format and additional features. Older configurations should work as before, but the configuration options
described below should be used for new setups. To maintain compatibility with future releases consider updating your
existing configuration to use the current options.

1.29.1 Overview

CollectiveAccess provides a storage location hierarchy to describe the physical locations where collection objects may
be located, displayed or stored. Storage locations are records like any other and may be associated with objects using
relationships. One can record the current location of an object by simply creating a relationship between object and
location.

This arrangement has the advantage of simplicity but comes with serious drawbacks:

1.27. PDF Output 237

CollectiveAccess Documentation, Release 1.8

• If your objects move often you’ll soon have a long list of previous locations, which can make it difficult to figure
out what the current location is.

• While the current location can be distinguished using a specific relationship type (Eg. “past location” for pre-
vious locations and “current location” for the latest location), you must manage setting of these types yourself,
which is labor intensive and prone to error.

• Removing previous locations and only recording only a single, current location will make for a simpler and
easier to manage display, but means no location history is maintained. For most users, losing location history
data is unacceptable.

• Only storage location records may be used to record location. If an object is on loan or exhibition workarounds
must be employed, such as dummy “On loan” and “On exhibition” storage locations records.

The history value tracking system (available as of CollectiveAccess version 1.7.9) provides a flexible way to track
object locations over time. It can also be used to track other time-varying information such as provenance and current
collection. The system employs tracking policies to maintain chronologies based upon one or more data elements,
and can return full histories as well as current values for any type of record. Tracking of location is the focus in this
discussion, but the approaches described here may be applied to other types of time-varying information.

1.29.2 Tracking approaches

To handle the range of tracking methodologies required by different types of museum and archival collections Collec-
tiveAccess offers two approaches to location tracking:

• Workflow-based location tracking. Current location is recorded for an object across a range of record types
representing various related activities, including loans, movements, occurrences (typically representing exhi-
bitions), collections, deaccession and storage location/inventory. The types of records considered part of the
tracking workflow, how their dates are established for assembly into a chronology, and how they are displayed
within the chronology are specified in a tracking policy. Policies are configured in the app.conf configuration
file using the history_tracking_policies described below.

• Movement-based location tracking. Location is recorded for objects in related movement records. Each move-
ment record captures details about a specific change in location for one or more objects. The current location
for an object is considered to be the location referred to by the most recent movement by date. Movement of
entire storage locations within the location hierarchy can be configured to generate a movement record, allowing
current location tracking to be based upon both individual object moves and movements of containers and other
storage units. Movement-based tracking is more complicated to configure and use, and is only called for when
capture of complex metadata (packing, transport, insurance, etc.) about chain of custody and methods used to
transition groups of objects between locations is required. This additional documentation comes at the expense
of added complexity and data entry, as every movement of an object or group of objects to a new location
requires completion of a full movement record.

Note: Movement-based tracking is only used when for object location tracking. If tracking non-location values such
as provenance, use workflow-based tracking.

1.29.3 Configuration

Configuration for workflow and movement-based tracking use the configuration format, with minor differences. Most
configuration occurs within the top-level history_tracking_policies entry in app.conf . Under this entry are
two keys, both mandatory:

• policies defines all available tracking policies. Most operational configuration resides under this key.

238 Chapter 1. Contents

CollectiveAccess Documentation, Release 1.8

• defaults specifies which policy should be used by default for a given table. You may define multiple policies per
table and declare specific policies be used in various contexts such as user interface bundles. Default policies
are a convenience that reduce configuration complexity by setting a standard policy to be overridden as needed.

An example history_tracking_policies configuration for workflow-based location tracking is shown below:

history_tracking_policies = {
defaults = {

ca_objects = current_location
},
policies = {

current_location = {
name = _(Current location),
table = ca_objects,
mode = workflow, # movements or workflow
elements = {

ca_storage_locations = {
__default__ = {

date = ca_objects_x_storage_locations.
→˓effective_date,

setInterstitialElementsOnAdd =
→˓[effective_date],

useDatePicker = 0,
template =
<l>^ca_storage_locations.hierarchy.

→˓preferred_labels.name%delimiter=__</l> <ifdef code='ca_objects_x_storage_locations.
→˓movement_by'>
MOVED BY: ^ca_objects_x_storage_locations.movement_by</ifdef>
→˓<ifdef code='ca_objects_x_storage_locations.movement_comments'>
COMMENTS: ^ca_
→˓objects_x_storage_locations.movement_comments</ifdef>,

trackingRelationshipType = related,
restrictToRelationshipTypes =

→˓[related]
}

},
ca_occurrences = {

exhibition = {
date = ca_occurrences.exhibition_date,
setInterstitialElementsOnAdd =

→˓[effective_date],
template =
<l>^ca_occurrences.preferred_labels.

→˓name</l>,
},
__default__ = {

date = ca_objects_x_occurrences.
→˓effective_date,

setInterstitialElementsOnAdd =
→˓[effective_date],

template =
<l>^ca_occurrences.idno</l> ^ca_

→˓occurrences.preferred_labels.name,
}

},
ca_loans = {

__default__ = {
date = ca_loans_x_objects.effective_

→˓date,
setInterstitialElementsOnAdd =

→˓[effective_date],
(continues on next page)

1.29. Tracking current object location 239

CollectiveAccess Documentation, Release 1.8

(continued from previous page)

color = F78B8B,
template = <l>^ca_loans.idno</l> ^ca_

→˓loans.preferred_labels (^ca_loans.institution ^ca_loans.date) <ifdef code='ca_loans_
→˓x_objects.movement_comments'>
COMMENTS: ^ca_loans_x_objects.movement_comments</
→˓ifdef>,

restrictToRelationshipTypes = [loan]
}

}
}

}
}

}

Within the policies section are keys for each configured policy. In the example, a single policy with the code
current_location is defined. Within each policy are entries for name (the display name of the policy), table
(the tables to which this policy applies), mode (workflow or movement-based tracking) and elements.

Elements defines the various types of data tracked by the policy. Each key is a table name. Within each table
block are entries for types. The special __default__ type is used to match any type not explicitly listed for the
table. In the example the configuration for storage locations (ca_storage_locations) applies to all types of locations.
The ca_occurrences entry includes a configuration specifically for occurrences of type “exhibition”, and a default
configuration for all other types.

Each per-type configuration must include entries for date and template. date is a bundle specifier for a date field
in either the related table or the relationship to that table. The value in the specified field will be used to determine
where in the chronology of tracked values each related record is placed. In the example, the object-location relationship
effective_date intrinsic field is used to track locations, which the occurrence exhibition_date metadata
element is used to place exhibitions in time. template is a display template employed to format data for the related
record in the chronology. The template will be evaluated relative to the relationship between the object and related
record, allowing inclusion of both interstitial (relationship-based) and related-record metadata. In the example the
template for loans includes data from both the related loan record as well as the object-loan relationship.

Other, optional keys in per-type configuration configuration include color (chronology color-coding),
restrictToRelationshipTypes (a list of relationship types to limit chronology display to),
setInterstitialElementsOnAdd (a list of interstitial fields to allow the user to set when creating a
relationship from within the chronology). The full list of possible entries is:

240 Chapter 1. Contents

CollectiveAccess Documentation, Release 1.8

Entry name Description Mandatory?
date A bundle specified referring to the date metadata element containing

the date values used to order related entries in the chronology.
Yes

dateMode When set to “dateless” chronology will display relevant entries in
the order in which they were added to CollectiveAccess, most re-
cently added first. If omitted any value other than “dateless”, entries
will be sorted by their configured date values.

No

template Display template used to format data for the related record in the
chronology. The template will be evaluated relative to the relation-
ship between the object and related record, allowing inclusion of
both interstitial (relationship-based) and related-record metadata.

Yes

setInterstitialElementsOnAddA list of interstitial fields to allow the user to set when creating a
relationship from within the chronology

No

trackingRelationshipTypeRelationship type to use by default when creating relationships from
within the chronology.

No

sortDirection Direction to order items in the chronology. Default is “DESC” (de-
scending, or most recent first). Use “ASC” to force display with
most recent last.

No

useDatePicker Set to non-zero value to enable date picker user interface on date
metadata elements.

No

restrictToRelationshipTypesList of relationship types to limit display to in the chronology out-
put.

No

color Color to use for color-coding in the chronology. No
includeFromChildren If set to a non-zero value, data from child records are included in

the chronology.
No

childTemplate If includeFromChildren is set, childTemplate is a display template
used to format data from child records.

No

1.29.4 The chronology bundle

You can display a chronology of values for a policy in the editing user interface using the
history_tracking_chronology bundle.

1.29. Tracking current object location 241

CollectiveAccess Documentation, Release 1.8

The bundle is designed to provide a centralized control panel for managing current location, and includes tools to
update location with new loans, movements, occurrences, storage locations, collections and entities. It also offers
tools to remove existing relationships and edit interstitial (relationship-specific) data. These tools may be disabled if
required.

It displays related locations, occurrences, loans, movements, etc. in chronological order, with the most recent first
(although this can be changed). Information from each related record can be formatted using display templates. By
default all settings are taken from the policy configuration, but can be overriden by values specific to placements of
the bundle in the user interface.

At a minimum when adding a chronology bundle to the editing user interface you must specify a policy. There are
many other options which can be set in the an installation profile if desired. Available options include:

242 Chapter 1. Contents

CollectiveAccess Documentation, Release 1.8

Entry name Description Mandatory?Default
value

policy The code of history tracking policy to display. Yes None
displayMode Format of display. May be set to either “chronology” (chronolog-

ical view of history) or “tabs” (tabbed display with current value
and history separated). Most history management options are only
available when using the chronology display mode.

No chronology

dateMode Determines method used to order the chronology. May be set to
either “use_dates” (sort by date as configured) or “dateless” (sort
by order entered). “dateless” is typically used as a fallback when
legacy location data lacks specific dates.

No use_dates

useAppConfDefaults Use policy defaults as configured in app.conf when set to a non-zero
value. Setting to zero allows override of many options.

No 1

sortDirection Direction to order items in the chronology. Default is “DESC” (de-
scending, or most recent first). Use “ASC” to force display with
most recent last.

No DESC

currentValueColor Background color code for current value used when displayMode is
“tabs”

No #EEEEEE

futureValueColor Background color code for future values used when displayMode is
“tabs”

No #EEEEEE

pastValueColor Background color code for historical values used when display-
Mode is “tabs”

No #EEEEEE

hide_include_child_history_controlsHistory of children of related records can be included on demand.
Set to a non-zero value to hide the tool to control this feature.

No 0

hide_add_to_loan_controlsSet to a non-zero value to hide the tool for adding loans to the
chronology.

No 0

hide_add_to_movement_controlsSet to a non-zero value to hide the tool for adding movements to the
chronology.

No 0

hide_update_location_controlsSet to a non-zero value to hide the tool for adding storage locations
to the chronology.

No 0

hide_return_to_home_location_controlsSet to a non-zero value to hide the tool for returning an object to its
home location

No 0

hide_add_to_occurrence_controlsSet to a non-zero value to hide the tool for adding occurrences to
the chronology.

No 0

add_to_occurrence_typesA list of occurrence types to offer “add to chronology” options for.
Values must be valid occurrence type codes.

No 0

hide_add_to_collection_controlsSet to a non-zero value to hide the tool for adding collections to the
chronology.

No 0

add_to_collection_typesA list of collection types to offer “add to chronology” options for.
Values must be valid collection type codes.

No 0

hide_add_to_entity_controlsSet to a non-zero value to hide the tool for adding entities to the
chronology.

No 0

add_to_entity_types A list of entity types to offer “add to chronology” options for. Values
must be valid entity type codes.

No 0

hide_add_to_object_controlsSet to a non-zero value to hide the tool for adding objects to the
chronology.

No 0

useHierarchicalBrowserSet to a non-zero value to offer a hierarchcy browser when selecting
storage locations. If not set a type-ahead lookup will be used.

No 0

hide_value_interstitial_editSet to a non-zero value to hide tools for editing interstitial data on
relationships displayed in the chronology.

No 0

hide_value_delete Set to a non-zero value to hide the tool from deleting items from the
chronology

No 0

1.29. Tracking current object location 243

CollectiveAccess Documentation, Release 1.8

1.29.5 The current contents bundle

The current contents bundle (history_tracking_current_contents) enables display of all items that cur-
rently have a given record as their current value. It is typically used on storage location records to display a list of
objects currently resident in that location.

The following options are available to set in an installation profile:

Entry name Description Mandatory?Default
value

policy The code of history tracking policy to use for display. Yes None
list_format Format of display. May be set to either “bubbles” (small stacked

entries) or “list” (a list view of items).
No bubbles

colorItem Background color to use on items. No #FFFFFF
displayTemplate A display template to use for each item displayed No The pre-

ferred
label
of the
related
item

244 Chapter 1. Contents

CollectiveAccess Documentation, Release 1.8

1.29.6 Inspector display

You can display the current value of a history tracking policy in the editor “inspector” (the information panel on the
upper left-hand corner of the editor interface). You can set the policy to use on a per-table and/or per-type basis using
the inspector_tracking_displays entry in app.conf.

inspector_tracking_displays = {
ca_objects = {

__default__ = {
policy = current_location,
label = _(Current location)

}
}

}

Each entry within inspector_tracking_displays is a table name. Each table in turn has a list of types (and/or
the catch-all __default__ type that matches type not explicitly configured). Each type has two entries: policy
(the policy to use) and label (A label placed above the current value). In the example above the current value for the
“current_location” policy is displayed when editing objects of all types.

1.29. Tracking current object location 245

CollectiveAccess Documentation, Release 1.8

A typical inspector with this configuration would appear as show in the screen image on the right.

1.29.7 Display in templates

Current value information may be included in display templates using the following tags:

Tag Description
^<table>.history_tracking_current_valueThe current value, formatted using the template as specified in the pol-

icy configuration. If multiple policies are defined the default policy
is used unless a policy is specified using the policy parameters. (Ex.
^ca_objects.history_tracking_current_value%policy=provenance)

^<table>.history_tracking_current_date The date of the current value. If multiple policies are defined the default
policy is used unless a policy is specified using the policy parameters.
(Ex. ^ca_objects.history_tracking_current_date%policy=provenance)

^<table>.history_tracking_current_contentsA list of items whose current value is the subject of the dis-
play template. For a current location policy for objects, ^his-
tory_tracking_current_contents will display in a template for a stor-
age location (for example) all objects currently at that location.
(Ex. ^ca_storage_locations.history_tracking_current_contents)Object
preferred labels are returned. The template is not configurable.

1.29.8 Searching on current values

Current values can be indexed for search on a per-table, per-policy basis. Any value in the related table can be indexed,
enabling one to search, for example, on the description of current loans only for objects. Typically only basic values
such as name and identifier are indexed as current values, allowing for searches on storage location names, loan
recipients, etc.

To set up current value indexing you will need to insert new directives into your search_indexing.conf file. For each
related table block to be indexed add a new current_values entry. Within this entry add entries for each policy.
Within the policy entry add field indexing entries in the same format as used for regular indexing.

The example below is a fragment from the ca_objects indexing configuration. Note the added
current_values blocks. current_location refers to a policy configured in app.conf.

ca_storage_locations = {

tables = {
places = [ca_objects_x_storage_locations],

},
fields = {

location_id = { DONT_INCLUDE_IN_SEARCH_FORM },
idno = { STORE, DONT_TOKENIZE, INDEX_AS_IDNO, BOOST = 100 }

},
current_values = {

current_location = {
idno = { STORE, DONT_TOKENIZE, INDEX_AS_IDNO, BOOST = 100 }

}
}

},

ca_storage_location_labels = {

tables = {
places = [ca_objects_x_storage_locations, ca_storage_locations]

(continues on next page)

246 Chapter 1. Contents

CollectiveAccess Documentation, Release 1.8

(continued from previous page)

},
fields = {

location_id = { DONT_INCLUDE_IN_SEARCH_FORM },
name = { INDEX_ANCESTORS, INDEX_ANCESTORS_START_AT_LEVEL = 0, INDEX_

→˓ANCESTORS_MAX_NUMBER_OF_LEVELS = 10, INDEX_ANCESTORS_AS_PATH_WITH_DELIMITER = .}
},
current_values = {

current_location = {
name = { }

}
}

},

In this example both the “idno” intrinsic field (part of ca_storage_locations) and the “name” intrinsic field in storage
location preferred labels (the ca_storage_location_labels table) are indexed for objects as current values.

To search on current values use the built-in “current_values” access point. Eg. to find all records with current value
“Cellar” in any field search on `current_values:Celler`. To limit the search to a specific policy use the
access point “current_values.<policy code>”. Eg. `current_values.current_location:Cellar`. To
search on a specific policy and field use “current_values.<policy_code>.<field code>”. The field code used must be
indexed for the search to return results.

These same access point formats can be used when configuring advanced search forms.

1.29.9 Browsing on current values

To browse on current location add a facet to browse.conf of type “current_value”:

current_location = {
type = current_value,
restrict_to_types = [],
policy = current_location,

display = {
ca_storage_locations = {

__default__ = { template = ^ca_storage_locations.
→˓hierarchy.preferred_labels.name%delimiter=_>_ }

}
},

include_none_option = No location specified,

label_singular = _("current location"),
label_plural = _("current locations")

},

Current value-specific settings include policy, which must be set and display, which customizes display of
current values within the browse. If not defined formatting from the policy is used.

The collapse facet option controls which sorts of current values are collapsed into general headings rather than
displayed individually. Keys of the entry are table names and type separated with a slash (“/”). Values are text
with which to represent the collapsed group in the browse facet. For example, to collapse all occurrences of type
“exhibition” into a single facet value labeled “On loan” use:

1.29. Tracking current object location 247

CollectiveAccess Documentation, Release 1.8

collapse = {
ca_occurrences/exhibition = On loan

}

Selecting “On loan” would return all objects where the current location is any exhibition. Without the collapse setting,
each exhibition would be listed individually.

1.29.10 Home locations

As of version 1.7.9 it is possible to set a “home” location for an object. The home location is its
typical storage location. If set, both the chronology (history_tracking_chronology) and contents
(history_tracking_current_contents) bundles can include options to return objects to their home lo-
cations, noting the change in the chronology.

Home location can be set by clicking the small house icon in the object editor inspector panel. A hierarchy browser
will appear from which you can select the home location.

To display the home location in the inspector panel set the inspector_home_location_display_template
entry in app.conf to show the desired storage location fields and formatting. The
home_location_display_template entry defines a template for formatting the home location in dis-
play templates and in the hierarchy browser.

A reasonable configuration for these entries, displaying the selected home location prefixed by its parent location is:

inspector_home_location_display_template = "<unit relativeTo='ca_storage_locations.
→˓hierarchy' delimiter=' '>^ca_storage_locations.preferred_labels.name</unit>"
home_location_display_template = <l><inspector_home_location_display_template></l>

The inspector_home_location_display_template sets the format in the above example. The
home_location_display_template takes that format and surrounds it with <l> tags to make it a clickable

248 Chapter 1. Contents

CollectiveAccess Documentation, Release 1.8

link.

Home locations can be output in display templates for objects using the tag `^ca_objects.
home_location_value`. The value returned by this tag will be formatted according to the template
format in the app.conf home_location_display_template entry.

1.29.11 Updating the cache

For performance reasons, the current location of the object is cached in the database and used when browsing. Since
current location values are calculated based upon the settings in the app.conf change in configuration will likely
invalidate the cached data. To regenerate the cache and ensure accurate browse results be sure to run the following
caUtils command on the command line:

caUtils reload-current-values-for-history-tracking-policies

If your current value browse is returning unexpected results it is recommended to run the command, which may resolve
the issue.

1.30 Workflow-based location tracking

• Configuration

– Step 1

– Step 2

• Configuring bundle-specific settings through an installation profile

• Browsing by current location

• Updating the cache

• General maintenance

• Displaying current locations in reports

1.30.1 Configuration

Unlike the other location tracking options, which only handle storage locations, workflow-based location tracking
calculates the current location of an object by looking at a range of related records, including Loans and Occurrences,
comparing their dates, and selecting the most recently dated. What types of records are considered and which date
elements in those records are used for comparison are entirely configurable.

Workflow-based location tracking can supplement direct object-location reference or movement-based tracking. That
is, locations recorded with those two methods may be part of the mix of records workflow-based tracking considers
when calculating the current location, but they don’t have to be.

Step 1

Primary configuration is done in app.conf through the current_location_criteria directive. current_location_criteria
is an associative array the keys of which are the primary types you want considered. Relevant primary types for location
tracking are: ca_storage_locations, ca_loans, ca_movements, ca_object_lots and ca_occurrences. Each primary type

1.30. Workflow-based location tracking 249

CollectiveAccess Documentation, Release 1.8

has a sub-array the keys of which are sub-types (except for ca_storage_locations for which it is a relationship type).
Each sub-type/relationship type in turn has an array of options. For example:

current_location_criteria = {
ca_storage_locations = {

related = {
template = ^ca_storage_locations.hierarchy.preferred_labels%delimiter=__

}
},
ca_movements = {

shipping = { date = pickup_date, color = 9bae33 },
framing = { date = pickup_date, color = 541353 },
conservation = { date = pickup_date, color = 245442 },
administrative = { date = pickup_date, color = 992222 },

},
ca_loans = {

collection = {
date = loan_period,
color = cccccc

}
},
ca_occurrences = {

exhibition = {
date = exh_dates,
color = 00cc00

}
},
The entry for ca_objects controls if and how deaccessions are displayed
ca_objects = {

template = ^ca_objects.deaccession_notes (^ca_objects.deaccession_date),
color = cc0000

}
}

In this example, ca_movements is a primary table, while shipping is a movement type and date is an option for the
shipping type (and others as well) specifying what date element should be used to calculate this movement types place
in the object’s history. (For the ca_storage_locations primary type in the example, related is an object-storage location
relationship type, and template is an option of that relationship type).

Note that display of deaccessions (managed via the ca_objects_deaccession editor bundle) in the object use history is
controlled using the ca_objects primary type. If it is present in the configuration deaccessions will be shown, formatted
using the supplied template and color, as in the example above.

Sub-type/relationship type options affect both the what is considered current and how the current location is displayed.
Options include:

Option Name Description Mandatory?
template A display template evaluated relative to the

related record when it is calculated to be
current

No. Will default to displaying the preferred
label of the record

date The code of the DateRange metadata ele-
ment used when calculating current loca-
tion.

Yes for all primary types except
ca_storage_locations, for which date is
derived from the object-storage location
relationship.

color A color to highlight entries of this type with.
Should be six-digit hex color

No

250 Chapter 1. Contents

CollectiveAccess Documentation, Release 1.8

This configuration will be used to display current location in the editor inspectors, when browsing on workflow-based
current location and by default in the Object Use History (ca_objects_history) editor bundle.

Step 2

The Object Use History (ca_objects_history) editor bundle bundle is used to display the current location as
well as a detailed history of previous use when using Workflow-based tracking (As opposed to Current Location
(ca_objects_location) which is for Direct object-location tracking). It is intended as a convenient means to show
where an object is and has been, but can also be configured to show any set of related records by date. The bundle
has a variety of settings to customize the layout and contents of the location stream. All of these can be set in the
current_location_criteria bundle in app.conf, described previously, and used as defaults in the bundle. Let’s take a
look at an example:

In the bundle seen above the cataloguer has configured different colors and templates to showcase Accession, Loan,
and Storage Location activity and data. Each block is automatically sorted by the date chosen through the bundle
settings for that table. For example, Artwork loans are sorted on the “Loan Period” as seen via the dates on the far
right-hand side. When a new relationship is created to any of the three configured tables a new segment will appear
in the stream in the appropriate order based on date. In addition to the tables shown in the example, Occurrences,
Movements, and Deaccessions can also be configured.

The contents of each block in the stream are entirely configurable using metadata display templates. With this powerful
syntax any metadata from the related record, or from those records related to the related record, can be displayed in the
Use History bundle. An example of that relationship traversing can be seen above in the Artwork loan blocks. There,
the “Borrower” is displayed using the below syntax which pulls entities related to the related loan:

<l>^ca_loans.preferred_labels</l>

<ifdef code="ca_loans.loan_period">Loan Period:</ifdef> ^ca_loans.loan_period

Borrower: <unit relativeTo="ca_loans">
<unit relativeTo="ca_entities" delimiter=", " restrictToRelationshipTypes="borrower">^
→˓ca_entities.preferred_labels</unit></unit>

1.30.2 Configuring bundle-specific settings through an installation profile

To add the Use History bundle to the installation profile, simply include the bundle placement and relevant settings
on the appropriate UI screen. The use history settings defined in app.conf are taken as a system-wide universal, but
defining the ca_objects_history setting in the profile allows for UI-specific customizations.

<placement code="ca_objects_history">
<bundle>ca_objects_history</bundle>
<settings>
<setting name="ca_object_lots_purchase_dateElement">accession_date</setting>
<setting name="ca_object_lots_purchase_color">#663A8C</setting>

</settings>
</placement>

The chart below lists settings per table that can be included in your profile. Be sure to replace #type# with the custom
type configured in your profile. For example, if “purchase” was the item idno in your list ca_object_lot_types, then
your setting would be: ca_object_lots_purchase_dateElement.

Note that there is no dateElement setting for storage locations. Storage locations are sorted on the date cataloged.

1.30. Workflow-based location tracking 251

CollectiveAccess Documentation, Release 1.8

Setting Name Description
hide_add_to_loan_controls Set to 1 if you want to to hide the “Add to loan” controls in this bundle placement.

Defaults to 0
hide_update_location_controlsSet to 1 if you want to to hide the “Update Location” controls in this bundle place-

ment. Defaults to 0
useHierarchicalBrowser Set to 1 if you want to provide an hierarchical browser when searching for an updated

storage location
locationTrackingMode Sets method for tracking location of object within storage location hierarchy. Set to

ca_storage_locations to use direct object-location references; set to ca_movements to
use movement-based location tracking

useAppConfDefaults Set to 1 if you want to use the app.conf current_location_criteria settings. If you want
to set specific settings for this bundle then set this to 0 and specify values for that
various settings below

ca_object_lots_showTypes Sets which object lots types appear in the use history stream. For all showTypes
settings, repeat once for each type that should be included. Use the item idno i.e.
<setting name=”ca_object_lots_showTypes”>purchase</setting>

ca_object_lots_#type#_dateElementSets the date field that is used to sort object lots of this type in the use history stream.
ca_object_lots_#type#_color Sets the color for this type of object lot. Use hex colors with no pound sign, i.e.

“B1AAF2”
ca_object_lots_#type#_displayTemplateSets the template for metadata displayed for this type of object lot in the use history

stream.
ca_occurrences_showTypes Sets which occurrence types appear in the use history stream.
ca_occurrences_#type#_dateElementSets the date field that is used to sort this type of occurrence in the use history stream.
ca_occurrences_#type#_colorSets the color for this type of occurrence. Use hex colors with no pound sign, i.e.

“B1AAF2”
ca_occurrences_#type#_displayTemplateSets the template for metadata displayed for this type of occurrence in the use history

stream
ca_movements_showTypes Sets which movement types appear in the use history stream.
ca_movements_#type#_dateElementSets the date field that is used to sort this type of movement in the use history stream.
ca_movements_#type#_colorSets the color for this type of movement. Use hex colors with no pound sign, i.e.

“B1AAF2”
ca_movements_#type#_displayTemplateSets the template for metadata displayed for this type of movement in the use history

stream
ca_loans_showTypes Sets which loan types appear in the use history stream.
ca_loans_#type#_dateElementSets the date field that is used to sort this type of loan in the use history stream.
ca_loans_#type#_color Sets the color for this type of loan. Use hex colors with no pound sign, i.e. “B1AAF2”
ca_loans_#type#_displayTemplateSets the template for metadata displayed for this type of loan in the use history stream
ca_storage_locations_showRelationshipTypesSets which related storage locations will appear.
ca_storage_locations_color Sets the color for all storage locations types. Use hex colors with no pound sign, i.e.

“B1AAF2”
ca_storage_locations_displayTemplateSets the template for metadata displayed for storage locations of all types.
showDeaccessionInformationSets whether or not Deaccessions are included in the stream. 1 = yes; 0 = no.
deaccession_color Sets the color for deaccessions. Use hex colors with no pound sign, i.e. “B1AAF2”
deaccession_displayTemplateSets the template for deaccessions.

1.30.3 Browsing by current location

Workflow-based location tracking will cache the current location of the object within the object record, which makes
browsing possible. To set up a current location browse add a facet of type location in browse.conf. For example:

252 Chapter 1. Contents

CollectiveAccess Documentation, Release 1.8

current_location = {
type = location,
restrict_to_types = [],

group_mode = none,

collapse = {
ca_loans = On loan,
ca_movements/conservation = In conservation,
ca_movements/shipping = Shipped,
ca_movements/administrative = Consigned

},

display = {
ca_storage_locations = {

related = { template = ^ca_storage_locations.hierarchy.preferred_labels
→˓%delimiter=__ (storage) }

},
ca_occurrences = {

exhibition = { template = ^ca_occurrences.preferred_labels.name (exhibition)
→˓}

},
},
maximumBrowseDepth = 1,
include_none_option = No location specified,

label_singular = _("current location"),
label_plural = _("current location")

}

The collapse, display, maximumBrowseDepth and include_none_option directives are specific to location facets:

1.30. Workflow-based location tracking 253

CollectiveAccess Documentation, Release 1.8

Directive Description Mandatory?
collapse The facet will list entries for each distinct storage location. By de-

fault this means the each individual loan, movement, storage loca-
tion or occurrence will be listed in the facet. For storage locations
and occurrences this usually exactly what you want. Listing indi-
vidual loans and movements, however, often results in a long list of
undifferentiated values that makes effective browsing difficult. col-
lapse’ directs the browse to consolidate all records of a given type
(and optionally) sub-type into a single generic facet value. In the ex-
ample above, collapsing onca_loansresults in all objects for which
the current location is a loan being browsable via a single “On loan”
facet item. For movements, facet items are presented for individual
movement sub-types.

No.

display Sets the display template used to generate the facet item for the
specified type and sub-type (or in the case of storage locations, type
and relationship type). Each template is generated relative to the
related record.

No.

include_none_option Enable browsing for objects that have no current location set. The
values of this directive will be used as the text of the facet item.

No

maximumBrowseDepthAs of version 1.7: Enables the bucketing of storage locations into
top-level facets. Child locations are grouped by their parent, based
on the depth set through this configuration. A browse at the parent
level will be inclusive of all child locations. For example, objects
currently stored in the locations: Offsite Storage > Room 1 and Off-
site Storage > Room 2 will return when a user browses on Offsite
Storage if the maximumBrowseDepth is set to 1.

No

1.30.4 Updating the cache

For performance reasons, the current location of the object is cached within the object record itself. Since loca-
tions are calculated based upon the settings in the app.conf current_location_criteria directive, and change in cur-
rent_location_criteria will likely invalidate the cached data. To regenerate the cache and ensure accurate browse
results be sure to run the following caUtils command on the command line:

bin/caUtils reload-object-current-locations

1.30.5 General maintenance

Both direct object-location and movement-based location tracking rely on dates embedded in relationships between
related records. If you are updating an older system, change app.conf configuration or otherwise have reason to believe
these dates may be out of sync with the underlying movement and location data from which they are derived you can
run the following caUtils command on the command line to refresh values:

bin/caUtils reload-object-current-location-dates

For most data sets this command should take only seconds to a few minutes to run and will not have adverse effects.
If you are getting odd ordering in use histories or display of current location try running this command to resolve the
issues.

254 Chapter 1. Contents

CollectiveAccess Documentation, Release 1.8

1.30.6 Displaying current locations in reports

As of version 1.6 an object’s current location can be included in reports via the Displays editor. To include the location,
simply drag the “Current Location” bundle (also shown as “Object Location”) onto your Display.

By default this bundle will display the Current Location as it is defined by the current_location_criteria (see above).
Put another way, the report will output the same formatting used for location tracking in the cataloging interface. To
override this formatting, use the “display format” setting on the “Object Location” bundle. To include the activity
date use the syntax: ^ca_objects.ca_objects_location_date. To show the current_location_criteria use the syntax:
^ca_objects.ca_objects_location.

1.31 Import Mappings

• Introduction

• Sample Mapping

• Supported Data Input Formats

• Creating a Mapping

– Settings

– Rule Types (Column 1)

– Source (Column 2)

– CA_table.element (Column 3)

– Group (Column 4)

– Options (Column 5)

– Refineries (Column 6-7)

* Splitters

* Makers

* Joiners

* Getters

* Builders

– Original values and Replacement values (Columns 8-9)

– Source Description & Notes (Columns 10 & 11)

• Importing data

1.31.1 Rules

• Rule description

1.31. Import Mappings 255

CollectiveAccess Documentation, Release 1.8

Rule description

Rules allow you to set record-level conditionals in your mapping with target actions triggered by true or false outcomes.
With Rules, you can manipulate the migration of specific data and/or set metadata based on expression statements.
For example, let’s say you want to skip a record if a certain element in your data source is exactly equal to a specific
value. Rules allows you to set a target action, such as “SKIP,” when a match is triggered.

Rules rely on a two part operation outlined in the import mapping. The first component is is called “Rule triggers” and
it is an expression statement that results in a quantity that is evaluated by the data importer. The second defines “rule
actions” that are performed based on the outcome of the expression.

Let’s walk through an example. (See also the in-depth description of expressions).

For our example, we are going to skip all records with the phrase “do not use” in the description. To do so we write an
expression to match “do not use” in the required field, and then set the action to execute when the expression is true to
be “SKIP.” For the sake of this example we’re importing an Excel spreadsheet and the description is in column 5:

This is how the rule should look in the import mapping:

Set “Rule” as your rule type and add the following to the Rule triggers column:

(^5 =~ /do not use/)

Where ^5 references column 5 and =~ invokes the regular expression operator. In the “actions” column is a simple
reference to the action:

SKIP

Note that you can potentially add several actions to a single rule trigger by separating the actions with returns. For
CollectiveAccess versions up to 1.6, the only possible action is “SKIP”, which skips the entire record rather than
importing it.

From version 1.7 a “SET” action is also available, allowing the injection of arbitrary values into the import source data
subject to trigger criteria. These values may then be mapped as if they were actually present in the original source
data.

SET actions are more complicated than SKIP, requiring more than just the action name to be defined. To accommodate
this, the actions list must be in JSON format for SET. The block is a list of objects, each of which has four keys:

256 Chapter 1. Contents

CollectiveAccess Documentation, Release 1.8

Key Description
ac-
tion

Name of action - SET in this case

tar-
get

The name of the injected value. You can use this name is mappings as you would use any other element in
the source data. Eg. if you set this to inventory_yn_value then you will be able to map inventory_yn_value
as a source to any CollectiveAccess element.

value The value to inject into the source data under the target name when the trigger evaluates as true.
else The value to inject into the source data under the target name when the trigger evaluates as false.

An action list with a single SET action looks like this:

[{
"action": "SET",
"target": "inventory_yn_value",
"value": "yes",
"else": "no"

}]

1.31.2 Refineries

https://docs.collectiveaccess.org/wiki/Data_Importer#Refineries

1.31.3 Builders

• CollectionHierarchyBuilder

• CollectionIndentedHierarchyBuilder

• EntityHierarchyBuilder

• PlaceHierarchyBuilder

• ObjectHierarchyBuilder

• OccurrenceHierarchyBuilder

• ListItemHierarchyBuilder

• ListItemIndentedHierarchyBuilder

• StorageLocationHierarchyBuilder

CollectionHierarchyBuilder

DOCS at https://docs.collectiveaccess.org/wiki/Data_Importer#Refineries

CollectionIndentedHierarchyBuilder

NEW, built for Apollo collections import in 2019 for Alex, Seth to document

1.31. Import Mappings 257

https://docs.collectiveaccess.org/wiki/Data_Importer#Refineries
https://docs.collectiveaccess.org/wiki/Data_Importer#Refineries

CollectiveAccess Documentation, Release 1.8

EntityHierarchyBuilder

PlaceHierarchyBuilder

ObjectHierarchyBuilder

OccurrenceHierarchyBuilder

ListItemHierarchyBuilder

ListItemIndentedHierarchyBuilder

StorageLocationHierarchyBuilder

1.31.4 Splitters

• Import Mapping

– CA table.element

• Refinery Options

– attributes

* Additional Properties - Auto-generated idnos

* objectRepresentationSplitter Additional Properties

– Type

– TypeDefault

– delimiter

– displayNameFormat

– dontCreate

– elements

– ignoreParent

– interstitial

– list

– matchOn

Import Mapping

See below for examples of splitters in an import mapping:

258 Chapter 1. Contents

CollectiveAccess Documentation, Release 1.8

CA table.element

Enter the splitter in the Refinery column of the import mapping. Enter the CollectiveAccess table as shown in the chart
below.

CA table.element Refinery
ca_collections collectionSplitter
ca_entities entitySplitter
ca_list_items listItemSplitter
ca_loans loanSplitter
NO TABLE measurementsSplitter
ca_movements movementSplitter
ca_places placeSplitter
ca_objects objectSplitter
ca_objects.lot_id objectLotsSplitter
ca_ocurrences occurrenceSplitter
ca_tour_stops tourStopSplitter
ca_storage_locations storageLocationSplitter

Refinery Options

Splitter refineries can either create records or match data to existing records (following a mapping’s existingRecord-
Policy) or break a single string of source data into several metadata elements in CollectiveAccess. Splitters for rela-
tionships are used when several parameters are required, such as setting a record type and setting a relationship type.
Using the entitySplitter, a name in a single location (i.e. column) in a data source can be parsed (into first, middle,
last, prefix, suffix, et al.) within the new record. Similarly the measurementSplitter breaks up, for example, a list of
dimensions into to a CollectiveAccess container of sub-elements. “Splitter” also implies that multiple data elements,
delimited in a single location, can be “split” into unique records related to the imported record. Refinery options are
listed below.

attributes

Sets or maps metadata for the entity record by referencing the metadataElement code and the location in
the data source where the data values can be found

See below for additonal attribute settings for the entitySplitter and objectRepresentationSplitter

Example

1.31. Import Mappings 259

CollectiveAccess Documentation, Release 1.8

{"attributes": {
"address": {

"address1": "^24",
"address2": "^25",
"city": "^26",
"stateprovince": "^27",
"postalcode": "^28",
"country": "^29"

}
}

}

Additional Properties - Auto-generated idnos

To map source data to idnos, see the ‘attributes’ parameter above. An exception exists for when idnos
are set to be auto-generated. To create auto-generated idnos within any splitters where it’s relevant (i.e
measurementSplitter doesn’t support this), use the following syntax.

"attributes": {"idno":"%"}

objectRepresentationSplitter Additional Properties

Sets the attributes for the object representation. “Media” sets the source of the media filename in the data,
which is what will match on the actual media file in the import directory. Note: filenames in source data
may or may not the include file extension, but source data must match filename exactly. Set the media
filename to idno, using “idno”. Additional attributes, such as the example, “internal_notes”, can also be
set here.

{"attributes":{
"media": "^1",
"internal_notes": "^2",
"idno": "^1"

}
}

Applicable refineries: collectionSplitter, entitySplitter, listItemSplitter, loanSplitter, measurementsSplit-
ter, movementSplitter, placeSplitter, objectSplitter, objectLotsSplitter, occurrenceSplitter, tourStopSplit-
ter

Type

Accepts a constant list item idno from the list (collection_types, object_types, entity_types,
list_item_types, loan_types) or a reference to the location in the data source where the type can be found

260 Chapter 1. Contents

CollectiveAccess Documentation, Release 1.8

Splitter Type
collectionSplitter collectionType
entitySplitter entityType
listItemSplitter listItemType
loanSplitter loanType
measurementsSplitter
movementSplitter
placeSplitter
objectSplitter
objectLotsSplitter
occurrenceSplitter
tourStopSplitter
storageLocationSplitter

Applicable Refineries: collectionSplitter, entitySplitter, listItemSplitter, loanSplitter

TypeDefault

Sets the default type that will be used if none are defined or if the data source values do not match any
values in the CollectiveAccess list types (collection_types, object_types, entity_types, list_item_types,
loan_types).

Splitter TypeDefault
collectionSplitter collectionTypeDefault
entitySplitter entityTypeDefault
listItemSplitter listItemTypeDefault
loanSplitter loanTypeDefault
measurementsSplitter
movementSplitter
placeSplitter
objectSplitter
objectLotsSplitter
occurrenceSplitter
tourStopSplitter
storageLocationSplitter

Applicable Refineries: collectionSplitter, entitySplitter, loanSplitter, listItemSplitter

delimiter

Sets the value of the delimiter to break on, separating data source values

{"delimiter": ";"}

Applicable Refineries: collection Splitter, entitySplitter, listItemSplitter, loanSplitter, measurementsSplit-
ter, movementSplitter, placeSplitter, objectSplitter, objectLotSplitter, objectRepresentationSplitter, occur-
renceSplitter, tourStopSplitter

1.31. Import Mappings 261

CollectiveAccess Documentation, Release 1.8

displayNameFormat

Allows you to format the output of the displayName. Options are: “surnameCommaForename” (forces
display name to be surname, forename); “forenameCommaSurname” (forces display name to be fore-
name, surname); “forenameSurname” (forces display name to be forename surname); “original” (is the
same as leaving it blank; you just get display name set to the imported text). This option also supports an
arbitrary format by using the sub-element codes in a template, i.e. “^surname, ^forename ^middlename”.
Doesn’t support full format templating with <unit> and <ifdef> tags, though.

{"displaynameFormat": "surnameCommaForename"}

Applicable Refineries: entitySplitter

dontCreate

If set to true (or any non-zero value) the splitter will only do matching and will not create new records
when matches are not found.

{"dontCreate": "1"}

Applicable Refineries: collectionSplitter, entitySplitter, listItemSplitter, loanSplitter, movementSplit-
ter, objectLotsSplitter, objectRepresentationSplitter, objectSplitter, occurrenceSplitter, placeSplitter,
tourStopSplitter

elements

Maps the components of the dimensions to specific metadata elements

{"elements": [
{

"quantityElement": "measurementWidth",
"typeElement": "measurementsType",
"type": "width"

},
{

"quantityElement": "measurementHeight",
"typeElement": "measurementsType2",
"type": "height"

}
]}

Note: the typeElement and type sub-components are optional and should only be used in measurement
containers that include a type drop-down.

Applicable Refineries: measurementsSplitter

ignoreParent

For use with collection hierarchies. When set to true this parameter allows global match across the entire
hierarchy, regardless of parent_id. Use this parameter with datasets that include values to be merged into
existing hierarchies but that do not include parent information. Paired with matchOn it’s possible to merge
the values using only name or idno, without any need for hierarchy info. Not ideal for situations where
multiple matches can not be disambiguated with the information available.

{"ignoreParent": "1"}

262 Chapter 1. Contents

CollectiveAccess Documentation, Release 1.8

Applicable Refineries: collectionSplitter, entitySplitter, listItemSplitter, loanSplitter, movementSplitter,
objectLotsSplitter, objectSplitter, occurrenceSplitter, placeSplitter, tourStopSplitter

interstitial

Sets or maps metadata for the interstitial movementRelationship record by referencing the metadataEle-
ment code and the location in the data source where the data values can be found.

{
"interstitial": {

"relationshipDate": "^4"
}

}

Applicable Refineries: collectionSplitter, entitySplitter, listItemSplitter, loanSplitter, movementSplitter,
objectLotsSplitter, objectSplitter, occurrenceSplitter, placeSplitter, tourStopSplitter

list

Enter the list_code for the list that the item should be added to. This is mandatory - if you forget to set it
or set it to a list_code that doesn’t exist the mapping will fail.)

{"list": "list_code"}

Applicable Refineries: listItemSplitter

matchOn

From version 1.5. Defines exactly how the splitter will establish matches with pre-existing records. You
can set the splitter to match on idno, or labels. You can also include both labels and idno in the matchOn
parameter, and it will try multiple matches in the order specified.

“{""matchOn"": [""labels"", ""idno""]} -Will try to match on labels first, then idno.

{""matchOn"": [""idno"", ""labels""]} - Will do the opposite, first idno and then labels.

You can also limit matching by doing one or the other. Eg:

{“”matchOn”“: “”idno”“]} will only match on idno.

{“”matchOn”“: [“”^ca_collections.your_custom_code”“]} will match on a custom metadata element in
the collection record. Use the syntax ^ca_collections.metadataElement code.”

1.31.5 Mapping Options

Options allow you to set additional formatting and conditionals on data during import. Some Options are designed
to actually set parameters on the mapping behavior, such as the skip options. skipGroupIfEmpty, for example, allows
you to prevent the import of certain fields, depending on the presence of data in another related field. Other Options
simply format data, such as formatWithTemplate, suffix, and convertNewlinesToHTML.

1.31. Import Mappings 263

CollectiveAccess Documentation, Release 1.8

Option: applyRegularExpressions

This option allows the user to effectively rewrite messy and problematic source data using Perl compatible regular
expressions as supported in the PHP programming language. Let’s say you are mapping duration data to a TimeCode
element, and the source data syntax is invalid. See the Regular Expressions page for useful regular expressions.

Invalid timecode format: 7.30.

Should be transformed to valid timecode format: 7:30

The invalid data can be transformed using the applyRegularExpressions option with the proper regular expressions.

{
"applyRegularExpressions": [

{
"match": "([0-9]+)\\.([0-9]+)",
"replaceWith": "\\1:\\2"

},
{

"match": "[^0-9:]+",
"replaceWith": ""

}
]

}

match: A regular expression applied to source data values. replaceWith: If a match is found, it will be replaced with
whatever is contained in “replaceWith”.

In this example, the first regular expression matches <number>.<number> and replaces it with <number>:<number>.
In other words, “7.30.” becomes “7:30.”. The [0-9]+ string matches sequences of 1 or more numbers. Since they’re
in parenthesis they can be “back referenced” into the replaceWith part using the \1 and \2 placeholders. The second
regular expression matches any character that is not a number or a colon (the first one having reformatted any period
between numbers as a colon) and replaces it with nothing – removing it in other words. This regular expression takes
care of the erroneous period at the end of the invalid data.”7:30.” is transformed into “7:30” - a valid TimeCode input.

Note: The only deviation from the standard regular expressions language are the backslashes. Wherever
you would use a single backslash in a regular expression, you need to use two in our mapping because
JSON treats backslashes specially and demands that a literal \ be encoded as \\

Option: prefix

Option: suffix

Transform Values Using Worksheet

Using Original values and Replacement values (Columns 8-9) <import/mappings:Original values and Replacement
values (Columns 8-9)> is sufficient for transforming a small range of values. But for large transformation dictionaries,
use the option “transformValuesUsingWorksheet” instead. You can use this option to reference a list of values in a
separate worksheet within the mapping document. The formatting of the sheet should place original values in the first
column, and replacement values in the second column.

When this option is set, any values in the “original values” and “replacement values” columns of the mapping work-
sheet are ignored, even if the “transformValuesUsingWorksheet” worksheet is empty or does not exist. You refer to
the sheet by name:

264 Chapter 1. Contents

CollectiveAccess Documentation, Release 1.8

{"transformValuesUsingWorksheet":"Worksheet Title"}

1.31.6 Supported File Formats

• Overview

• Currently Supported File Formats

– XLS, XLSX, CSV, TSV

– XML (Including FileMaker XML, Inmagic XML, EAD XML, PastPerfect XML, Vernon XML, TEI XML,
PBCore XML, MediaBin, MARCXML & MODS)

– MARC

– EXIF, IPTC, XMP

– RDF

– ULAN-Linked Data

– Omeka

– WorldCat

– CollectiveAccess

Overview

Data may be imported into CollectiveAccess in a range of formats, including from Excel, CSV, a range of XML
formats and others including external databases such as WorldCat. The fields from these sources are matched to
CollectiveAccess tables and fields using the Mapping document’s “Source” column, described here.

This page provides an overview of formats compatible with data import as well as how to identify a specific element
from the source file for the Mapping document.

Currently Supported File Formats

XLS, XLSX, CSV, TSV

Spreadsheets are mapped by column, with numeric identifiers provided in the Source column of the import mapping.
If you wish to map from Column B of an Excel spreadsheet, you would list the Source as 2. (A = 1, B = 2, C = 3, and
so on.)

XML (Including FileMaker XML, Inmagic XML, EAD XML, PastPerfect XML, Vernon XML, TEI XML,
PBCore XML, MediaBin, MARCXML & MODS)

XML sources are referenced using xPath, a query language for selecting nodes and computing values from XML
documents (a basic tutorial is available from W3C).

In general the Source column should be set to the name of the XML tag, proceeded with a forward slash (i.e. /Spon-
soring_Department or /inm:ContactName)

Common examples of xPath expressions are provided in the table below.

1.31. Import Mappings 265

https://en.wikipedia.org/wiki/XPath
http://www.w3schools.com/xsl/xpath_intro.asp

CollectiveAccess Documentation, Release 1.8

Imports Description XML example Mapping source
syntax

Notes

Items Imports element
items <text>

<body>
<div>

→˓ITEM
</div>

</body>
</text>

/text/body/
div

Example imports
“ITEM”.

Items with a partic-
ular attribute value

Imports items only
from elements with
a certain attribute
node value.

<text>
<body>

<div
→˓attribute=
→˓"thistype!">

→˓ITEM
</div>

</body>
</text>

/text/body/
div[@attribute='thistype!
']

Maps element items
with “thistype!” as
attribute value.

Attribute value Imports the attribute
node value itself. <text>

<body
<div

→˓attribute=
→˓"thistype!">

→˓ITEM
</div>

</body>
</text>

/text/
body/div/
@attribute

Using the example,
this mapping would
import ‘thistype!’
itself, as opposed to
“ITEM”.

Items not of a
particular attribute
value

Imports items in
cases where the
element does not
have an attribute,
or in cases where
the attribute value is
empty.

<text>
<body>

<div>

→˓ITEM_1
</div>
<div

→˓attribute=
→˓"thistype!">

→˓ITEM_2
</div>

</body>
</text>

/text/body/
div[not(@attribute)]

This only necessary
in cases where there
are other instances
where the same ele-
ment does have the
attribute, like the ex-
ample here. In
this case, ITEM_1
would be imported,
and ITEM_2 would
not.

MARCXML files can also be imported using the xPath syntax. Standard fields and indicators can be selected as
Sources as follows:

266 Chapter 1. Contents

CollectiveAccess Documentation, Release 1.8

Imports Description XML example Mapping source syntax
(XPATH)

245 - Title Statement Mapping source for
MARC data field 245
subfield a.

<datafield ind1="1
→˓" ind2="4" tag=
→˓"245">

<subfield code=
→˓"a">The human
→˓factor /</
→˓subfield>
</datafield>

/
datafield[@tag='245']/
subfield[(@code='a')]

001- Control Number Mapping source for
MARC control field 001 <controlfield tag=

→˓"001">3780733</
→˓controlfield>

/
controlfield[@tag='001']

100 - Main Entry: Per-
sonal Name

Mapping source for
MARC data field 100
subfield a.

<datafield ind1="1
→˓" ind2=" " tag=
→˓"100">

<subfield code=
→˓"a">Greene,
→˓Graham,</
→˓subfield>
</datafield>

/
datafield[@tag='100']/
subfield[(@code='a')]

FileMakerPro XMLRESULT files generally follow the XML and xPath conventions described above but require some
special formatting considerations due to inclusion of invalid characters in field names in certain databases (i.e. Art-
Base). Source field names in the mapping must follow these rules:

• Field name should be preceeded with a forward slash (i.e. /Inventory::ArtistLast)

• The importer does not trim trailing spaces in field names so watch out for that!

• Only A-Z a-z 0-9 and these special characters are accepted _ - & # ? % :

• For all other special characters, including a space, replace the character with a single _ (underscore).

• If two invalid special characters fall in a row, use only a single _ (underscore) rather than two

MARC

MARC records, in addition to MARCXML files, can be imported by using. . .

EXIF, IPTC, XMP

These embedded metadata standards can be imported from uploaded media (images, video, audio, etc.) using the same
import mappings as described above. The inputFormat should always be set to “EXIF”.

Note: SYSTEM REQUIREMENT

To import EXIF data your server must have the free ExifTool application installed on your server. Make sure the
ExifTool entry in your external_application.conf configuration file is set to point to the installed application.

1.31. Import Mappings 267

http://www.sno.phy.queensu.ca/~phil/exiftool/

CollectiveAccess Documentation, Release 1.8

EXIF data can be difficult to decifer and locate the desired fields for import as the labels that appear in applications
such as Photoshop that use the data often do not match the names given in the underlying EXIF file.

These names can be found by running the ExifTool command-line application. Once installed it can be run as:

exiftool -json -a -gl my_file.tiff

This will return a set of JSON encoded metadata, which matches the format used by the CollectiveAccess importer,
allowing the names of fields within the metadata to be accurately identified. For example this block of EXIF metadata
can be used to identify the type of lens used for a photograph:

"XMP-aux": {
"SerialNumber": 1260413208,
"LensInfo": "18-55mm f/?",
"Lens": "18.0-55.0 mm",
"ImageNumber": 0,
"ApproximateFocusDistance": 4294967295,
"FlashCompensation": 0,
"OwnerName": "Erik Garcia Gomez",
"Firmware": "1.1.1"

},

To extract the lens information the block heading “XMP-aux” would be joined with the sub-section “Lens” with a
slash to create “XMP-aux/Lens”. This would be added to the Source column of the import mapping and matched with
a target field in CollectiveAccess.

As this import format is used frequently in conjunction with media import, two more options are available to help
identify uploaded media and match metadata to the correct files within the system. Use _filename_ as a source if you
wish to set any field in CollectiveAccess as the filename. And more importantly, _filepath_ points to the media in the
import directory, and can be used to trigger ingestion of the media itself.

Source Description Parameter notes
__filename__ This source value takes the filename

of the media being imported. You
can import filenames to any field
in CollectiveAccess, including pre-
ferred_labels and idno.

__filepath__ This source takes the full server
filepath from your media import di-
rectory to give you the media. Map
this to ca_object_representations
and use the objectRepresentation-
Splitter.

{"objectRepresentationType
→˓": "front",

"attributes": {
"media": "^__

→˓filepath__"
}

}

RDF

This is an option for importing linked data in RDF format. . .

ULAN-Linked Data

ULAN Data can be imported through an interface available in the Import menu dropdown in CollectiveAccess.

268 Chapter 1. Contents

CollectiveAccess Documentation, Release 1.8

Omeka

Omeka data may be imported by. . .

WorldCat

WorldCat objects can be searched and imported using the WorldCat interface available in the Import menu dropdown.
This tool uses standard import mappings to match the WorldCat source fields to fields in the CollectiveAccess profile.

These import mappings are written as described above in the xPath notation used for MARCXML.

CollectiveAccess

Migrating data from one CollectiveAccess installation to another can be done by setting the Source column to the
appropriate ca_table.element identifier. This will map the originating data to the fields of the new installation.

1.31.7 Regular Expressions

• Remove All Spaces

Remove All Spaces

Changes “1982 . 30001” into “1982.30001”

" {
""applyRegularExpressions"":
[{

""match"": ""(\\s)+"",
""replaceWith"": """"

}]
}"

1.31.8 Introduction

Users can map and migrate data directly from the command line or the Providence user interface (under “Import >
Data”) into a Providence installation, mapping to the installation profile. An import mapping is a spreadsheet that
defines how data is imported into CollectiveAccess. There are many settings and options in the import mapping. This
documentation is organized by column, with a description of the function of each column along with the available
settings for that column.

Import mappings operate under two basic assumption about your data: that each row in a data set corresponds to a
single record and that each column corresponds to a single metadata element. The exception to these rules is an option
called treatAsIdentifiersForMultipleRows that will explode a single row into multiple records. This is very useful if
you have a data source that references common metadata shared by many pre-existing records in a single row. See the
Options section for more details: http://manual.collectiveaccess.org/import/tutorial.html#options-column-5.

Running a data import involves seven basic steps:

1.31. Import Mappings 269

http://manual.collectiveaccess.org/import/tutorial.html#options-column-5

CollectiveAccess Documentation, Release 1.8

1. Create an import mapping document (in Excel or Google Sheets) that will serve as a crosswalk between source
data and the destination in CollectiveAccess.

2. Create a backup of the database by executing a data dump before running the import .

3. Run the import from either the command line or the graphical user interface.

4. Check the data in CollectiveAccess and look for errors or points of inconsistencies.

5. Revise your mapping accordingly.

6. Load the data dump so that the system returns to its pre-import state.

7. Run the import again.

1.31.9 Sample Mapping

Download these files to see how the Sample Mapping applies to the Sample Data within the Sample Profile. Note that
you can upload these to Google Drive and import both import mappings and source data via Google Drive.

Sample mapping.xlsx
Sample data.xlsx
Sample import profile.xml

1.31.10 Supported Data Input Formats

Data can be in: Exif, MODS, RDF, Vernon, FMPDSOResult, MediaBin, ResourceSpace, WordpressRSS, CSVDe-
limited, FMPXMLResult, MySQL, SimpleXML, WorldCat, CollectiveAccess (CA-to-CA imports), Inmagic, Omeka,
TEI, iDigBio, EAD, MARC, PBCoreInst, TabDelimited, Excel, MARCXML, PastPerfectXML, ULAN

A full description of the supported import formats and how they may be referenced is available in the in the Supported
File Formats page.

270 Chapter 1. Contents

../_static/_files/Sample_mapping.xlsx
../_static/_files/Sample_data.xlsx
../_static/_files/Sample_import_profile.xml

CollectiveAccess Documentation, Release 1.8

1.31.11 Creating a Mapping

Settings

Start from the sample worksheet provided above. Settings include the importer name, format of the input data, Col-
lectiveAccess table to import to, and more. This section can be placed at the top or bottom of a mapping spreadsheet
with the setting in the first column and parameter in the second. It functions separately from the main column-defined
body of the import mapping.

1.31. Import Mappings 271

CollectiveAccess Documentation, Release 1.8

Setting Description Parameter notes Example
name Give your mapping a

name.
Arbitrary text My Sample mapping

code Give your mapping an al-
phanumeric code of the
mapping

Arbitrary text, with no
special characters or
spaces

my_sample_mapping

inputFormats Sets type of source (in-
put) data that can be han-
dled by this import map-
ping. Values are format
codes defined by the var-
ious DataReader plugins.

file type XLSX

table Sets the table for the im-
ported data. If you are im-
porting Objects, set the ta-
ble to ca_objects. If you
are importing Collections,
set this to ca_collections,
and so on.

Corresponds to the Col-
lectiveAccess basic tables

ca_objects

type Set the Type of record to
set all imported records
to. If you are import-
ing Objects, what type are
they? Photographs, Arti-
facts, Paintings, etc. This
value needs to correspond
to an existing value in the
the types list. For objects,
the list isobject_types. If
the import includes a map-
ping to type_id, that will
be privileged and the type
setting will be ignored.

CollectiveAccess list item
code

image

numInitialRowsToSkip The number of rows at
the top of the data set to
skip. Use this setting to
skip over column headers
in spreadsheets and simi-
lar data.

numeric value 1

existingRecordPolicy Determines how existing
records in the Collec-
tiveAccess system are
checked for and handled
for the mapping. Also
determines how records
created by the mapping
are merged with other
instances (idno and/or
preferred label) in the data
source.
(In CollectiveAccess, the
primary ID field is “idno”
and the title/name field
of each record is “pre-
ferred_label”.)
From version 1.7.9 op-
tions to skip, merge or
overwrite on internal
CollectiveAccess record
ids is also supported
via the *_on_id options.
These options can be
useful when re-importing
data previously exported
from a CollectiveAccess
instance.
none
skip_on_idno
merge_on_idno
overwrite_on_idno
skip_on_preferred_
→˓labels
merge_on_preferred_
→˓labels
overwrite_on_
→˓preferred_labels
skip_on_idno_and_
→˓preferred_labels
merge_on_idno_and_
→˓preferred_labels
overwrite_on_idno_
→˓and_preferred_
→˓labels
merge_on_idno_with_
→˓replace
merge_on_preferred_
→˓labels_with_
→˓replace
merge_on_idno_and_
→˓preferred_labels_
→˓with_replace
skip_on_id
merge_on_id
merge_on_id_with_
→˓replace
overwrite_on_id

none

ignoreTypeForExistingRecordPolicyIf set record type will
be ignored when look-
ing for existing records as
specified by the existing
records policy.

0 or 1 0

mergeOnly If set data will only be
merged with existing
records using the existing
records policy and no new
records will be created.
Available from version
1.7.9.

0 or 1 0

dontDoImport If set then the mapping
will be evaluated but no
rows actually imported.
This can be useful when
you want to run a refinery
over the rows of a data set
but not actually perform
the primary import.

0 or 1 0

basePath For XML data formats, an
XPath expression select-
ing nodes to be treated as
individual records. If left
blank, each XML docu-
ment will be treated as a
single record.

Must be a valid Xpath ex-
pression

/export

locale Sets the locale used for
all imported data. Leave
empty or omit to use
the system default locale.
Otherwise set it to a valid
locale code (Ex. en_US,
es_MX, fr_CA).

Must be a valid ISO locale
code.

en_US

errorPolicy Determines how errors are
handled for the import.
Options are to ignore the
error, stop the import
when an error is encoun-
tered and to receive a
prompt when the error is
encountered. Default is to
ignore.

ignore stop ignore

272 Chapter 1. Contents

CollectiveAccess Documentation, Release 1.8

Rule Types (Column 1)

Each row in the mapping must have a rule defined that determines how the importer will treat the record. Available
rules are:

Rule
type

Description

Map-
ping

Maps a data source column or table.field to a CollectiveAccess metadata element. Mappings can carry
refineries (see below).

SKIP Use SKIP to ignore a data source column or table.field.
Con-
stant

Set a data source column or table.field to an arbitrary constant value. Include the chosen value in the
Source column on the mapping spreadsheet. Matches on CollectiveAccess list item idno.

Rule Performs actions during the import (such as skipping or setting data) based on conditional expressions.
Made up of two parts: “Rule triggers” and “Rule actions.” TEST See Rules page for more information:
Rules

Set-
ting

Sets preferences for the mapping (see below).

Source (Column 2)

The source column sets which column from the data source is to be mapped or skipped. You can also set a constant
data value, rather than a mapping, by setting the rule type to “constant” and the source column as the value or list item
idno from your CollectiveAccess configuration.

An explanation of the most common sources is below. A full description of the supported import formats and how
they may be referenced is available in the in the Supported File Formats page.

Type Method for setting the source column
Spread-
sheets

You must convert column letters to numbers. For example, if you want to map Column B of an Excel
spreadsheet, you list the Source as 2. (A = 1, B = 2, C = 3, and so on.) Column B of your source data
would be pulled. If on the other hand, you wish to skip this column, you would set the Rule Type to Skip
and the source value to 2.

XML Set the Source column to the name of the XML tag, proceeded with a forward slash (i.e. /Sponsor-
ing_Department or /inm:ContactName)

XPath XPath is a query language for selecting nodes and computing values from an XML document. It is
supported for “Source” specification when importing XML. W3C offers a basic tutorial for writing XPath
expressions.

MARC Like other XML formats, the Source value for MARC XML fields and indicators can be expressed using
XPATH.

FM-
PXML/RESULT

FileMakerPro XMLRESULT. A few things to note here due to inclusion of invalid characters in field
names in certain databases (i.e. ArtBase). See Supported File Formats for rules for Source Field name
rules.

Note: Excel Tip: Translating A, B, C. . . to 1, 2, 3. . . can be time-consuming. Excel’s preferences allow you to
change columns to display numerically rather than alphabetically. Go to Excel Preferences and select “General.” Click
“Use R1C1 reference style.” This will display the column values as numbers.

Special sources

A few special sources are available regardless of the format of the data being imported. These values can be useful for
disambiguating the sources of data within CollectiveAccess after import.

1.31. Import Mappings 273

CollectiveAccess Documentation, Release 1.8

Sometimes it’s important to know, for example, which row from an Excel data set a record came from because there’s
not enough other data to disambiguate for testing, etc. “Special sources” addresses this by letting you map _row_
to somewhere like internal notes. To do this you include _row_ instead of a number in the source column of your
mapping.

Source Description
__row__ The number of the row being imported.
__source__The name of the file being imported. For files imported through the web interface this will be a server-

side temporary filename, not the original name of the file.
__filename__The original name of the file, when available. If the original name of the file is not available (because

the uploading web browser did not report it, for instance) then the value for __source__ is returned.
__filepath__The full path on the server to the file being imported.
__now__ The current date and time. (Available from version 1.7.9).

CA_table.element (Column 3)

This column declares the metadata element in the “table” set in Settings where the data in the source column will be
mapped to in CollectiveAccess. If you are setting the source to Skip you do not need to complete this step. If you are
mapping data or applying a constant value, you need to set the destination by adding the ca_table.element_code in this
column.

CA_table corresponds to the CollectiveAccess basic tables, while element_code is the unique code you assigned to a
metadata element in your CA configuration, or an intrinstic field in CA. For example, to map a Title column from your
source data into CollectiveAccess, set the CA table.element as ca_objects.preferred_labels

Mapping to Containers

A Container is a metadata element that contains sub-elements. In order to import to specific sub-elements within a
Container, you must cite the element codes for both the Container and the code for the sub-element: ca_table.
container_code.element_code.

Example: a Date field might actually be a container with two sub-elements: a date range field for the date itself, and a
date type drop-down menu to qualify the date. In this case, we would import the date from our source data as:

ca_objects.date.date_value
ca_objects.date.date_type

To map the two of these into the same container, use groups. See more in Group (Column 4) .

Mapping to Related Tables

Data will often contain references to related tables, such as related entities, related lots, related collections, related
storage locations, and so on. In order to import data of one table (like ca_objects) while also creating and related
records of other tables (like ca_entities), you will need to use refineries.

When your mapping includes references to a table outside the table set in the “table” Settings, you usually just need to
cite the table name in this column (example: ca_entities). Then set the details in the refineries column. The exception
to this is when you are creating Lot records. In this case, you set the ca_table.element_code to ca_objects.lot_id.

Group (Column 4)

In many cases, data will map into corresponding metadata elements bundled together in a container. To continue the
example above, a common container is Date, where there are actually two metadata elements - one for the date itself,
and another the date’s type (Date Created, Date Accessioned, etc.). Let’s say in your source data there is one column
that contains date values, while the next column over contains the date types.

274 Chapter 1. Contents

CollectiveAccess Documentation, Release 1.8

Declaring a Group is simple. Just assign a name to each line in mapping column 4 that is to be mapped into a single
container.

If Source “2” is mapping to ca_objects_date.date_value, and Source “3” is mapping to ca_objects.date.date_type, give
each line the group name “Date” This will tell the mapping that these two lines are going to a single container - and
won’t create a whole new container for each. Any word will work, it just has to be the same for each element that goes
into the container.

Options (Column 5)

Options can be used to set a variety of conditions on the import, process data that needs clean-up, or format data with
templates. This example shows some of the more commonly used options. See the complete list of options: Mapping
Options

Option Description Notes Example
delimiter Delimiter to split repeating values on. {"delimiter":

";"}
hierarchicalDelimiterDelimiter to use when formatting hierarchi-

cal paths. This option is only supported
by sources that have a notion of related
data and relationship types, most notably
(and for now only) the CollectiveAccess-
DataReader.

{"hierarchicalDelimiter:
" "}

formatWithTemplateDisplay template to format value with prior
to import. Placeholder tags may be used to
incorporate data into the template. Tags al-
ways start with a “^” (caret) character. For
column-based import formats like Excel and
CSV the column number is used to refer-
ence data. For XML formats an XPath ex-
pression is used. While templates are tied
to the specific source data element being
mapped, they can reference any element in
the import data set. For example, in an im-
port from an Excel file, the template used
while mapping column 2 (tag ^2 in the tem-
plate) may also use tags for any other col-
umn.

There is no require-
ment that a template
include a tag for
the column being
mapped. The tem-
plate can reference
any element in the
current row, without
restriction.

{
→˓"formatWithTemplate
→˓":

"Column 1: ^1;
→˓ Column 4: ^4"}

Continued on next page

1.31. Import Mappings 275

CollectiveAccess Documentation, Release 1.8

Table 5 – continued from previous page
Option Description Notes Example
applyRegularExpressionsRewrite source data using a list of Perl com-

patible regular expressions as supported in
the PHP programming language. Each item
in the list is an entry with two keys: “match”
(the regular expression) and “replaceWith”
(a replacement value for matches). “re-
placeWith” may include numbered back ref-
erences in the form \n where n is the index of
the regular expression parenthetical match
group.

“applyWithRegularExpressions”
will modify the data
value being mapped
for both import
and comparison.
Options that test
values, such as
“skipIfValue”, will
use the modified
value unless _useR-
awValuesWhen-
TestingExpression_
is set.

{

→˓"applyRegularExpressions
→˓": [

{
"match

→˓": "([0-9]+)\\.
→˓([0-9]+)",

→˓"replaceWith":
→˓"\\1:\\2"

},
{

"match
→˓": "[^0-9:]+",

→˓"replaceWith": ""
}

]
}

prefix Text to prepend to value prior to import. From version 1.7.9
placeholder tags
may be used to
incorporate import
data into the pre-
fix. In previous
versions, only static
text was supported.

suffix Text to append to value prior to import. From version 1.7.9
placeholder tags
may be used to
incorporate import
data into the suffix.
In previous ver-
sions, only static
text was supported.

default Value to use if data source value is empty.
restrictToTypes Restricts the the mapping to only records of

the designated type. For example the Dura-
tion field is only applicable to objects of the
type moving_image and not photograph.

{“restrictToTypes”:
[“moving_image”, “au-
dio”]}

filterEmptyValuesRemove empty values from values before
attempting to import.

When importing re-
peating values, all
values are imported,
even blanks. Set-
ting this option fil-
ters out any value
that is zero-length.

Continued on next page

276 Chapter 1. Contents

CollectiveAccess Documentation, Release 1.8

Table 5 – continued from previous page
Option Description Notes Example
filterToTypes Restricts the mapping to pull only records

related with the designated types from the
source.

This option is
only supported by
sources that have
a notion of related
data and types,
most notably (and
for now only) the
CollectiveAccess-
DataReader.

filterToRelationshipTypesRestricts the mapping to pull only records
related with the designated relationship
types from the source.

This option is
only supported
by sources that
have a notion of
related data and
relationship types,
most notably (and
for now only) the
CollectiveAccess-
DataReader.

skipIfEmpty Skip the mapping If the data value being
mapped is empty.

{"skipIfEmpty":
1}

skipRowIfEmpty Skip the current data row if the data value
being mapped is empty.

skipGroupIfEmptySkip all mappings in the current group if the
data value being mapped is empty.

skipIfValue Skip the mapping If the data value being
mapped is equal to any of the specified val-
ues.

Comparisons are
case-sensitive.

{“skipIfValue”: [“alpha”,
“gamma”]}

skipRowIfValue Skip the current data row If the data value
being mapped is equal to any of the speci-
fied values.

Comparisons are
case-sensitive.

{“skipRowIfValue”: [“al-
pha”, “gamma”]}

skipGroupIfValueSkip all mappings in the current group If the
data value being mapped is equal to any of
the specified values.

Comparisons are
case-sensitive.

{“skipGroupIfValue”:
[“alpha”, “gamma”]}

skipIfNotValue Skip the mapping If the data value being
mapped is not equal to any of the specified
values.

Comparisons are
case-sensitive.

{“skipIfNotValue”:
[“beta”]}

skipRowIfNotValueSkip the current data row If the data value
being mapped is not equal to any of the
specified values.

Comparisons are
case-sensitive.

{“skipRowIfNotValue”:
[“beta”]}

skipGroupIfNotValueSkip all mappings in the current group If the
data value being mapped is not equal to any
of the specified values.

Comparisons are
case-sensitive.

{“skipGroupIfNotValue”:
[“beta”]}

skipIfExpression Skip mapping if expression evaluates to
true. All data in the current row is available
for expression evaluation. By default, data
is the “raw” source data. To use data rewrit-
ten by replacement values and applyReg-
ularExpressions in your expression evalu-
ation, set the _useRawValuesWhenTesting-
Expression_ to false.

{“skipIfExpression”:
“^14 =~ /kitten/”}

Continued on next page

1.31. Import Mappings 277

CollectiveAccess Documentation, Release 1.8

Table 5 – continued from previous page
Option Description Notes Example
skipRowIfExpressionSkip data row if expression evaluates to true.

Data available during evaluation is subject
to the same rules as in _skipIfExpression_.

{“skipRowIfExpression”:
“wc(^14) > 10”}

skipGroupIfExpressionSkip mappings in the current group if ex-
pression evaluates to true. Data available
during evaluation is subject to the same
rules as in _skipIfExpression_.

{“skipGroupIfExpression”:
“wc(^14) > 10”}

skipIfDataPresentSkip mapping if data is already present in
CollectiveAccess.

Available from ver-
sion 1.7.9

skipIfNoReplacementValueSkip mapping if the value does not have a
replacement value defined.

Available from ver-
sion 1.7.9

skipWhenEmpty Skip mapping when any of the listed place-
holder values are empty.

Available from ver-
sion 1.7.9

{“skipWhenEmpty”:
[“^15”, “^16”, “^17”]}

skipWhenAllEmptySkip mapping when all of the listed place-
holder values are empty.

Available from ver-
sion 1.7.9

{“skipWhenAllEmpty”:
[“^15”, “^16”, “^17”]}

skipGroupWhenEmptySkip group when any of the listed place-
holder values are empty.

Available from ver-
sion 1.7.9

{“skipGroupWhenAllEmpty”:
[“^15”, “^16”, “^17”]}

skipGroupWhenAllEmptySkip group when all of the listed place-
holder values are empty.

Available from ver-
sion 1.7.9

{“skipGroupWhenAllEmpty”:
[“^15”, “^16”, “^17”]}

skipRowWhenEmptySkip row when any of the listed placeholder
values are empty.

Available from ver-
sion 1.7.9

{“skipRowWhenAllEmpty”:
[“^15”, “^16”, “^17”]}

skipRowWhenAllEmptySkip row when all of the listed placeholder
values are empty.

Available from ver-
sion 1.7.9

{“skipRowWhenAllEmpty”:
[“^15”, “^16”, “^17”]}

useRawValuesWhenTestingExpressionDetermines whether data used during evalu-
ation of expressions in _skipIfExpression_,
skipRowIfExpression and similar is raw,
unaltered source data or data transformed
using replacement values and/or regular ex-
pressions defined for the mapping. The de-
fault value is true – use unaltered data. Set
to false to use transformed data. (Available
from version 1.7.9)

Available from ver-
sion 1.7.9

{“useRawValuesWhenTestingExpression”:
false}

maxLength Defines maximum length of data to import.
Data will be truncated to the specified length
if the import value exceeds that length.

relationshipType A relationship type to use when linking to a
related record.

The relationship
type code is used.
This option is only
used when directly
mapping to a related
item without the use
of a splitter.

convertNewlinesToHTMLConvert newline characters in text to HTML

 tags prior to import.

collapseSpaces Convert multiple spaces to a single space
prior to import.

Continued on next page

278 Chapter 1. Contents

CollectiveAccess Documentation, Release 1.8

Table 5 – continued from previous page
Option Description Notes Example
useAsSingleValueForce repeating values to be imported as a

single value concatenated with the specified
delimiter.

This can be useful
when the value to be
used as the record
identifier repeats in
the source data.

matchOn List indicating sequence of checks for an ex-
isting record; values of array can be “label”
and “idno”. Ex. [“idno”, “label”] will first
try to match on idno and then label if the
first match fails.

This is only used
when directly map-
ping to a related
item without the use
of a splitter.

truncateLongLabelsTruncate preferred and non-preferred la-
bels that exceed the maximum length to fit
within system length limits.

If not set, an error
will occur if over-
length labels are im-
ported.

lookahead Number of rows ahead of or behind the cur-
rent row to pull the import value from.

This option allows
you to pull values
from rows relative
to the current row.
The value for this
option is always an
integer indicating
the number of rows
ahead or (positive)
or behind (negative)
to jump when ob-
taining the import
value. This setting
is effective only
for the mapping in
which it is set.

useParentAsSubjectImport parent of subject instead of subject. This option is pri-
marily useful when
you are using a
hierarchy builder
refinery mapped to
parent_id to create
the entire hierarchy
(including sub-
ject) and want the
bottom-most level
of the hierarchy to
be the subject rather
than the item that
is the subject of the
import.

Continued on next page

1.31. Import Mappings 279

CollectiveAccess Documentation, Release 1.8

Table 5 – continued from previous page
Option Description Notes Example
treatAsIdentifiersForMultipleRowsExplode import value on delimiter and use

the resulting list of values as identifiers for
multiple rows.

This option will
effectively clone a
given row into mul-
tiple records, each
with an identifier
from the exploded
list.

displaynameFormatTransform label using options for format-
ting entity display names. Default is to use
value as is.

Other options are
surnameCom-
maForename,
forenameComma-
Surname, fore-
nameSurname. See
DataMigrationU-
tils::splitEntityName().

mediaPrefix Path to import directory containing files ref-
erences for media or file metadata attributes.

This path can
be absolute or
relative to the
configured Collec-
tiveAccess import
directory, as de-
fined in the app.conf
_batch_media_import_root_directory_
directive.

matchType Determines how file names are compared to
the match value.

Valid values are
STARTS, ENDS,
CONTAINS and
EXACT. (Default is
EXACT).

matchMode Determines whether to search on file names,
enclosing directory names or both.

Valid values
are DIREC-
TORY_NAME,
FILE_AND_DIRECTORY_NAMES
and FILE_NAME.
(Default is
FILE_NAME).

errorPolicy Determines how errors are handled for the
mapping. Options are to ignore the error,
stop the import when an error is encountered
and to receive a prompt when the error is
encountered.

Valid values are _ig-
nore_ and _stop_.

add Always add values after existing ones even
if existing record policy mandates replace-
ment (Eg. merge_on_idno_with_replace,
Etc.)

Available from ver-
sion 1.7.9

replace Always replace values, removing exist-
ing, ones even if existing record policy
does not mandate replacement (Eg. is not
merge_on_idno_with_replace, Etc.).

Available from ver-
sion 1.7.9

In the example above, multiple subject values in the same cell that are separated by semi-colons. By setting the
delimiter option in the mapping, you are ensuring that these subject values get parsed and imported to discrete instances

280 Chapter 1. Contents

CollectiveAccess Documentation, Release 1.8

of the Subject field. Without the delimiter option, the entire string would end up a single instance of the Subject field.

Refineries (Column 6-7)

Refineries fall into one of 5 camps: Splitters, Makers, Joiners, Getters and Builders. Each framework is designed to
take a specific data format and transform it via a specific behavior as it is imported into CollectiveAccess. See the
Refineries page for a complete list of refineries: Refineries

Splitters

Splitter refineries can either create records, match data to existing records (following a mapping’s existingRecord-
Policy) or break a single string of source data into several metadata elements in CollectiveAccess. Splitters for rela-
tionships are used when several parameters are required, such as setting a record type and setting a relationship type.
Using the entitySplitter, a name in a single location (i.e. column) in a data source can be parsed (into first, middle,
last, prefix, suffix, et al.) within the new record. Similarly the measurementSplitter breaks up, for example, a list of
dimensions into to a CollectiveAccess container of sub-elements. “Splitter” also implies that multiple data elements,
delimited in a single location, can be “split” into unique records related to the imported record. See the Splitters page
for a complete list of splitters.

Makers

Maker refineries are used to create CollectiveAccess tour/tour stop, object lot/object and list/list item pairings. These
relationships are different than other CollectiveAccess relationships for two reasons. Firstly, they don’t carry relation-
ship types. Secondly, these relationships are always single to multiple: a tour can have many tour stops, but a tour
stop can never belong to more than one tour. Similarly an object can never belong to more than one lot. List items
belong to one and only one list. The Maker refinery is used for these specific cases where “relationshipType” and other
parameters are unnecessary.

Joiners

In some ways Joiners are the opposite of Splitters. An entityJoiner refinery is used when two or more parts of a name
(located in different areas of the data source) need to be conjoined into a single record. The dateJoiner makes a single
range out of two or more elements in the data source.

Getters

Getters are designed specifically for MYSQL data mappings. These refineries map the repeating source data through
the linking table to the correct CollectiveAccess elements.

Builders

Builders create an upper hierarchy above the to-be-imported data. Note that Splitters also create upper hierarchies
with the parent parameter, but they do so above records related to the imported data. For example, let’s say you were
importing ca_collections and wanted to map a “Series” and “Sub-series” above imported “File” data. You’d use the
collectionHierarchyBuilder refinery. However, if you were importing ca_objects and wanted to relate a “File” while
building an upper hierarchy of “Series” and “Sub-series” you would use the collectionSplitter and the parent parameter.
See the Builders page for a complete list of builders: Builders

1.31. Import Mappings 281

CollectiveAccess Documentation, Release 1.8

Original values and Replacement values (Columns 8-9)

In some cases, particularly when you are mapping to a list element, you may need the mapping to find certain values
in your source data and replace them with new values upon import. In the Original Value column, you may state
all values that you wish to have replaced. Then, in the Replacement Value column, set their replacements. You can
add multiple values to a single cell, so long as the replacement value matched the original value line by line. Using
the Original and Replacement columns is sufficient for transforming a small range of values. But for really large
transformation dictionaries, use the option “transformValuesUsingWorksheet” instead: http://manual.collectiveaccess.
org/import/mappings.html#transform-values-using-worksheet.

Source Description & Notes (Columns 10 & 11)

These two columns are used to clarify the source and purpose of each line in the mapping and are optional. Source
Description is generally a plain text label or name for the original source column to allow for easy reference to which
fields are being mapped (or skipped) in the mapping. Notes provides a space to explain how and why a certain line is
mapped in the manner that it is, for example, explaining why a certain value is being omitted or how an entity line is
being split and related to the main record.

These fields can be useful for future reference if a mapping is intended to be used repeatedly to be sure that the selected
mapping matches the source data.

1.31.12 Importing data

Once the import mapping is complete, you are ready to run the import. See the Running an Import page.

1.32 Basic Data Import Tutorial

• Introduction

• 1. Rule types (Column 1)

• 2. Settings

• 3. Source (Column 2)

• 4. CA table.element (Column 3)

• 5. Group (Column 4)

• 6. Options (Column 5)

• 7. Refinery (Column 6)

• 8. Refinery parameters (Column 7)

• 9. Original values/Replacement values (Columns 8 & 9)

• 10. Source Description & Notes (Columns 10 & 11)

• 11. Importing the sample data

282 Chapter 1. Contents

http://manual.collectiveaccess.org/import/mappings.html#transform-values-using-worksheet
http://manual.collectiveaccess.org/import/mappings.html#transform-values-using-worksheet

CollectiveAccess Documentation, Release 1.8

1.32.1 Introduction

This tutorial will provide you with the very basics of writing a custom import mapping, using an example mapping
document, sample data, and a basic profile configuration for Providence.

The tutorial is only intended to be a simple overview of basic import mapping principles. For more exhaustive and
complete documentation of the many various options and rules, please refer to the Data Importer page.

To begin this tutorial, download the following three files.

Sample mapping.xlsx
Sample data.xlsx
Sample import profile.xml

At its simplest, the import mapping is essentially a schema crosswalk: for every data source you list, you declare a
target “destination” for where the data should end up in CollectiveAccess. However, there are several additional rules
and parameters you can set to ensure the “data reader” can correctly parse and process the data.

Here is a column-by-column explanation of each component of the import mapping document.

1.32.2 1. Rule types (Column 1)

For each line in your import mapping document, you must declare a rule type. This basically just sets what each line’s
job is going to be during the import. The complete list of rules can be found on the Data Importer page, but these are
the rules necessary to run a basic import, and sufficient for most data imports.

Rule
type

Description

Map-
ping

Maps a data source (such as a column in an Excel spreadsheet or a specific tag in XML) to a Collec-
tiveAccess metadata element.

Skip Use Skip to ignore a data source.
Con-
stant

Sets an arbitrary constant value. Add the value to the source column and the value will be set in the
corresponding metadata element for every record that is imported.

Setting Sets general preferences for the mapping overall (SEE BELOW).

1.32.3 2. Settings

Every import mapping requires a few general settings, explained below. Again, the complete list of settings can be
found here, but these are the most basic and required settings to get started and handle most simple imports.

In our example mapping, we have set the name to Sample Mapping and code to sample_mapping. Because our sample
data is in an Excel spreadsheet, we’ve set the inputFormat to XLSX. Our source data contains Objects, so we’ve set
the table to ca_objects. Our system is empty (no records have been imported yet!) so the existingRecordPolicy is set
to none. Finally, we are importing photographs, which in our profile corresponds to the object type code image.

1.32. Basic Data Import Tutorial 283

../_static/_files/Sample_mapping.xlsx
../_static/_files/Sample_data.xlsx
../_static/_files/Sample_import_profile.xml

CollectiveAccess Documentation, Release 1.8

Setting Description Parameter notes Example
name Give your mapping a

name.
Arbitrary text My Sample mapping

code Give your mapping an al-
phanumeric code of the
mapping

Arbitrary text, with no
special characters or
spaces

my_sample_mapping

inputFormats Sets type of source (in-
put) data that can be han-
dled by this import map-
ping. Values are format
codes defined by the var-
ious DataReader plugins.

file type XLSX

table Sets the table for the im-
ported data. If you are im-
porting Objects, set the ta-
ble to ca_objects. If you
are importing Collections,
set this to ca_collections,
and so on.

Corresponds to the Col-
lectiveAccess basic tables

ca_objects

type Set the Type of record to
set all imported records
to. If you are import-
ing Objects, what type are
they? Photographs, Arti-
facts, Paintings, etc. This
value needs to correspond
to an existing value in the
the types list. For objects,
the list isobject_types. If
the import includes a map-
ping to type_id, that will
be privileged and the type
setting will be ignored.

CollectiveAccess list item
code

image

numInitialRowsToSkip The number of rows at
the top of the data set to
skip. Use this setting to
skip over column headers
in spreadsheets and simi-
lar data.

numeric value 1

existingRecordPolicy Determines how existing
records in the Collec-
tiveAccess system are
checked for and handled
for the mapping. Also
determines how records
created by the mapping
are merged with other
instances (idno and/or
preferred label) in the data
source.
(In CollectiveAccess, the
primary ID field is “idno”
and the title/name field
of each record is “pre-
ferred_label”.)
From version 1.7.9 op-
tions to skip, merge or
overwrite on internal
CollectiveAccess record
ids is also supported
via the *_on_id options.
These options can be
useful when re-importing
data previously exported
from a CollectiveAccess
instance.
none
skip_on_idno
merge_on_idno
overwrite_on_idno
skip_on_preferred_
→˓labels
merge_on_preferred_
→˓labels
overwrite_on_
→˓preferred_labels
skip_on_idno_and_
→˓preferred_labels
merge_on_idno_and_
→˓preferred_labels
overwrite_on_idno_
→˓and_preferred_
→˓labels
merge_on_idno_with_
→˓replace
merge_on_preferred_
→˓labels_with_
→˓replace
merge_on_idno_and_
→˓preferred_labels_
→˓with_replace
skip_on_id
merge_on_id
merge_on_id_with_
→˓replace
overwrite_on_id

none

ignoreTypeForExistingRecordPolicyIf set record type will
be ignored when look-
ing for existing records as
specified by the existing
records policy.

0 or 1 0

mergeOnly If set data will only be
merged with existing
records using the existing
records policy and no new
records will be created.
Available from version
1.7.9.

0 or 1 0

dontDoImport If set then the mapping
will be evaluated but no
rows actually imported.
This can be useful when
you want to run a refinery
over the rows of a data set
but not actually perform
the primary import.

0 or 1 0

basePath For XML data formats, an
XPath expression select-
ing nodes to be treated as
individual records. If left
blank, each XML docu-
ment will be treated as a
single record.

Must be a valid Xpath ex-
pression

/export

locale Sets the locale used for
all imported data. Leave
empty or omit to use
the system default locale.
Otherwise set it to a valid
locale code (Ex. en_US,
es_MX, fr_CA).

Must be a valid ISO locale
code.

en_US

errorPolicy Determines how errors are
handled for the import.
Options are to ignore the
error, stop the import
when an error is encoun-
tered and to receive a
prompt when the error is
encountered. Default is to
ignore.

ignore stop ignore

284 Chapter 1. Contents

CollectiveAccess Documentation, Release 1.8

Finally, you will notice that the source data contains a header in the first line, indicating what each column represents.
Since we don’t want to actually import this line as data, we’ll set numInitialRowsToSkip to 1, meaning the data
importer will skip the first line of the source data document.

1.32.4 3. Source (Column 2)

The second column in the mapping document is where you cite all data sources you wish to import. This is the first
part of the crosswalk essentially. For data that is stored in Excel, citing the source is easy - simply cite the numbers of
each column you want to import (Column A=1, Column B=2, and so on.)

Excel Tip: Corresponding A, B, C with 1, 2, 3 is easy enough, but when your source data has more than ten columns
or so it can be kind of a pain to come up with the numeric equivalent of each letter. However, in Excel’s preferences
you can change the columns to display numerically rather than alphabetically. Go to Excel Preferences and select
“General.” Click the option to “Use R1C1 reference style.” This will display the column values as numbers.

In the example we’re using for this tutorial, the sample data is in Excel. However, you may need to import data that is
in an XML format. XML sources are cited in xPath, which is the standard syntax for retrieving data encoded in XML.
Documentation regarding xPath be found here.

Our source data sample contains 10 columns of data, and each are listed in the mapping document under Source.

Source data columns may also be referenced elsewhere in the import mapping (generally in the Options or Refinery
columns described below) by prefixing the column number with a caret “^” (for example “^10”), which indicates to
the mapping that the value from column 10 should be inserted.

This allows multiple columns to be combined by using the Options settings and is frequently used within the Refineries
to create detailed related entities, collections etc.

1.32.5 4. CA table.element (Column 3)

In the mapping’s third column, you declare the destination, or target, for each source.

Most of the time, the import target is simply expressed as ca_table.element code. For example, ca_objects.description
in our sample mapping and profile would take the values from column 5 in the sample data and import them to the
Description field in the Object editor.

The correct way to cite the primary tables can be found here. Which table you use will likely correspond (in most, but
not all cases) to the table you declared in the Setting table.

When you are importing to simple free text, DateRange, Numeric, Currency, or other kinds of datatypes,
ca_table.element code is about all you need.

However, there are a few cases where some additional steps are involved.

Mapping to Containers: A Container is a metadata element that contains sub-elements. In order to import to specific
sub-elements within a Container, you must cite the element codes for both the Container itself, as well as the code for
the sub-element that is your ultimate target.

In our sample mapping, the Date import is an example of this. In the sample profile, you’ll notice that the Date field
is actually a container with two sub-elements: a date range field for the date itself, and a date type drop-down menu to
qualify the date.

Here, we import the date from the Column 3 in our source data to ca_objects.date.date_value, where date is the element
for the container and date_value is the element code for the final import destination.

Often times when you are importing to a Container, you’ll be mapping to multiple sub-elements withing the same
Container instance. That’s where the Group column comes in, which we’ll explain in the next section.

1.32. Basic Data Import Tutorial 285

CollectiveAccess Documentation, Release 1.8

Finally, all of the above is assuming that your data corresponds to the primary table of your import mapping. That is,
you have object-level data importing to the object table.

However, data will usually contain references to related tables, such as related entities, related lots, related collections,
related storage locations, and so on.

In order to import data of one table (like ca_objects) while also creating and related records of other tables (like
ca_entities), you will need to use refineries, which are explained in the following sections.

But all you need to know now is that when your mapping includes references to a table outside the primary table, you
usually just need to cite the table name in this column.

For example, Source 2 is mapped simply to ca_entities in the sample mapping. All of the actual details happen over
in the refinery parameters.

The solo exception to this is when you are creating Lot records. In this case, you set the ca_table.element_code to
ca_objects.lot_id. This exception is expressed in the sample mapping.

1.32.6 5. Group (Column 4)

Declaring a Group is a simple way to ensure that all of your mappings to a Container actually end up in the same
Container instance. You only need to use this column when you are mapping to Container elements.

In the example, we are mapping column 3 to ca_objects.date.date_value and using the constant rule to set
ca_objects.date.date_type to “date created”.

But without declaring both of these distinct mapping lines members of the same Group, you’d end up with one Date
container instance with the Date itself, and another Date container instance with the Date Type! To make sure both the
Date itself and the date type end up in the same instance of the Date container, simply assign them to the same group
in the fourth mapping column.

The name you assign the group is arbitrary, but it should be something that is recognizable to you. In our example,
I’ve simply called the group “Date”.

1.32.7 6. Options (Column 5)

Options, expressed in the fifth column of the mapping document, can be used to set a variety of conditions on the
import, process data that needs clean-up, or format the data with templates. Our example contains just a couple of the
more basic, but super useful options. A complete list of options can be found here.

Type of
Option

Description Parameter
notes

Example for “Options” col-
umn of mapping

skip-
IfEmpty

If the data value corresponding to this mapping is
empty, skip the mapping line.

set to a non-
zero value

{“skipIfEmpty”: 1}

delimiter Delimiter to split repeating values on. delimiter
value

{“delimiter”: “;”}

In the sample mapping, note the delimiter option set on our mapping to ca_objects.subject. Now refer to the second
record in our sample data. You’ll notice that there are multiple subject values in the same cell that are separated by
semi-colons. By setting the delimiter option in the mapping, you are ensuring that these subject values get parsed and
imported to discrete instances of the Subject field. Without the delimiter option, the entire string would end up a single
instance of the Subject field.

286 Chapter 1. Contents

CollectiveAccess Documentation, Release 1.8

1.32.8 7. Refinery (Column 6)

If your data import requires related records, then you need to use refineries. In other words, let’s say in one case you
are importing objects and all you need to bring in are Titles, Identifiers, Dates, and Description. No refinery will be
needed here. On the other hand, say you need to import Titles, Identifiers, Dates, Description, and Creators. . . and the
creators will be related to the Objects as Entities. This is where refineries come along.

While you can get really complex with refinery parameters, at its most basic a refinery simply creates a record, or
matches on an existing record, and creates a relationship between it and the record you are importing directly from the
source data.

In our example mapping, we are importing Images as ca_objects records. But using refineries, we are also creating
and relating Entity records to those Object records.

Our example uses an entitySplitter, but these same principles apply to the splitters for other tables: placeSplitter,
collectionSplitter, and so on.

The objectLotSplitter requires a few extra settings, all of which are cited in our example mapping.

Lastly, Splitters aren’t the only type of Refinery - they’re just the most common. For a complete list of refineries, go
here.

1.32.9 8. Refinery parameters (Column 7)

In our entitySplitter example, we’ll be using the most basic and commonly used refinery parameters: entityType, and
relationshipType. In the objectLotSplitter we will be using another useful parameter called attributes.

Type of Refinery parameter Parameter notes Example for “Refinery Parame-
ter” column of mapping

relationshipType Accepts a constant type code for the
relationship type or a reference to
the location in the data source where
the type can be found

{"relationshipType":
"^10"} or
{"relationshipType":
"author"}

entityType Accepts a constant list item idno
from the list entity_types or a ref-
erence to the location in the data
source where the type can be found

{"entityType":
"individual"}

attributes Sets or maps metadata for the en-
tity record by referencing the meta-
dataElement code and the location
in the data source where the data
values can be found

{
"attributes": {

"biography":"^23",
"address": {

"address1": "^24",
"address2": "^25",
"city": "^26",
"stateprovince": "^

→˓27",
"postalcode": "^28",
"country": "^29"

}
}
}

1.32. Basic Data Import Tutorial 287

CollectiveAccess Documentation, Release 1.8

1.32.10 9. Original values/Replacement values (Columns 8 & 9)

In some cases, particularly when you are mapping to a list element, you may need the mapping to find certain values
in your source data and replace them with new values upon import. In the Original Value column, you may state all
values that you wish to have replaced. Then, in the Replacement Value column, set their replacements. You can add
multiple values to a single cell, so long as the replacement value matched the original value line by line.

In our example, there is a list element called “Reproduction” with values for reproduction, original, and unknown. In
our source data, however, you’ll notice that the data input for these values are abbreviated (e.g “orig”, “repro”, and
“dontknow”). By using original and replacement values, our mapping transforms “orig” to “original” and “repro” to
“reproduction” so that they can match on the list item code for the corresponding values in CollectiveAccess.

1.32.11 10. Source Description & Notes (Columns 10 & 11)

These two columns are used to clarify the source and purpose of each line in the mapping and are optional. Source
Description is generally a plain text label or name for the original source column to allow for easy reference to which
fields are being mapped (or skipped) in the mapping. Notes provides a space to explain how and why a certain line is
mapped in the manner that it is, for example explaining why a certain value is being omitted or how an entity line is
being split and related to the main record.

These fields can be useful for future reference if a mapping is intended to be used repeatedly to be sure that the selected
mapping matches the source data.

1.32.12 11. Importing the sample data

Once you have installed the sample profile configuration, you can load the sample mapping by navigating from the
global navigtion menu to Import - Data and dragging the sample mapping file into the box labelled “Drag importer
worksheets here to add or update”.

Once the mapping is loaded, click on the icon to the right and you’ll be able to upload the sample data on the following
screen. From here, you can execute the data import!

288 Chapter 1. Contents

CollectiveAccess Documentation, Release 1.8

1.33 Running an Import

Running an import from the UI

You can execute a data import from your web browser within the Providence user interface. If you’re not comfortable
with using terminal, this is a good option. However, for larger imports it’s recommended to use the command line, so
your import is not tied up by a web browser. Remember to always back up your database before running an import, as
you will likely have to tweak imports multiple times.

From the Providence navigation, go to “Import - Data.” Drag and drop your import mapping XLSX to the importer
list, or add the Google Drive link to your import mapping.

Note: Google Drive links you must have sharing settings turned on to “Any User With Link Can View”. The
advantage of using a Google Drive link for your mapping document is that as you tweak and edit the Google Sheet,
you can update the importer by clicking the “Refresh” button in Providence. When using Excel docs, you must delete
and re-upload, or change the filename to upload a new version.

Once the mapping document is loaded, you will select it to run an import on the “run import” page, where there are
several settings.

1.33. Running an Import 289

CollectiveAccess Documentation, Release 1.8

Set-
ting

Description

Im-
porter

This menu contains all import mappings that are loaded in the importer list. By default, this will be set to
whatever mapping you chose on the previous screen.

Data
for-
mat

This menu will automatically contain the input format value you set in the import mapping itself. If the data
format does not actually correspond to the source data to be imported, change the inputFormat setting in the
mapping document.

Data
file

This is where you set the data file (or files) that are to be imported. The first option allows you to upload the
data file from your machine. The second option allows you to select the file from the import directory. Use
the latter option if you are importing a directory of multiple data files at once. The Third option allows you
to import data from a Google Drive link, which again needs to have Share settings turned on to work.

Log
level

This setting allows you to control the level of detail in the log. The log can capture errors, warnings, alerts,
informational messages, and debugging messages. Use the latter for the most comprehensive log.

Test-
ing
op-
tions

Selecting “dry run” will run the import and generate a log, including errors and debugging messages, without
actually creating any records in the system. It’s a great way to test an import mapping without actually
running an import.

Running an import from the terminal

Before you begin it’s a good idea to make an area for your import mappings and data that’s easily accessible without
an inconveniently-long file path. For the sake of this example our import material will live in a Providence directory
at:

/support/project/mappings and

/support/project/data

1. Backup your data: Before importing, you’ll maybe want to back-up your database

mysqldump -u#name -p#password project > ~/project_date.dump

2. Define an import: This is done using load-import-mapping option of caUtils:

cd /path_to_Providence/support

bin/caUtils load-import-mapping --file=project/mappings/mapping1.
xlsx

Once these commands have been run, the new mapping defined in mapping1.xlsx should have been added to imports
list. If an existing mapping with the same name as defined in settings section of mapping file already existed, it has
been updated.

3. Run the import: Once the import have been created, you’ll be able to use it. For that you’ll be using the utility
import-data, giving the correct name to –mapping parameter.

As you’ll see from:

bin/caUtils help import-data

there are several options that allow you to designate the format, data source, log preferences, etc.

To run the import:

bin/caUtils import-data --format=XLSX --mapping=mapping1
--source=project/data/Data.xlsx --log=project/log

With the PHP ncurses extension installed a display will provide moving status indicators including import progress
and recent errors.

290 Chapter 1. Contents

CollectiveAccess Documentation, Release 1.8

4. If something gone wrong, it’s time to fix mapping or data and import again. To modify your import and rerun
the utility, simply restore your database

mysql -u#name -p#password project < ~/project_date.dump

and start the process again

1.34 WorldCat

1.35 Getty Vocabularies

1.36 Importing media embedded metadata

CollectiveAccess can extract and import EXIF, IPTC, XMP and technical metadata embedded in uploaded image,
video, audio and document files. Import of embedded metadata can be performed on media uploaded as object repre-
sentations individually in the record editor interface or in batches using the media importer.

Transformation and import of media embedded metadata employs the import system used for import of data files in
various XML and delimited file formats. Crosswalks between embedded metadata extracted from media and Collec-
tiveAccess records are specified using the same import mapping format used for general data import.

Data is extracted from media using the standard MediaInfo and ExifTool applications. When using MediaInfo, ex-
tracted metadata is presented for import as PBCore version 2.0 XML. When using ExifTool, data is presented as nested
value tags. Creation of mappings for the import of output from these tools into CollectiveAccess is described in detail
below.

MediaInfo is an excellent tool for extracting embedded descriptive and technical metadata from audio and video files,
but returns limited metadata for images and documents. ExifTool returns comprehensive data for images, but may not
capture all aspects of time-based media. Therefore you may wish to employ ExifTool for some types of media and
MediaInfo for others. CollectiveAccess can be configured to automatically choose one over the other for specific file
types, or to let the user decide which to use. You can also specify import mappings for specific media formats.

1.36.1 Installing required software

You will need to have MediaInfo and/or ExifTool installed on your server. Both applications are packaged for easy
installation on most Linux distributions and the MacOS.

To install on RedHat/CentOS 7.x or 8.x:

yum install mediainfo exiftool

On Ubuntu/Debian 18.04lts:

apt install mediainfo exiftool

On MacOS (assuming you have the Homebrew package manager installed:

brew install mediainfo exiftool

Once installed, make sure the installed paths to the applications are set in your external_applications.conf configura-
tion file.

1.34. WorldCat 291

https://mediaarea.net/en/MediaInfo
https://exiftool.org
https://pbcore.org
https://brew.sh

CollectiveAccess Documentation, Release 1.8

1.36.2 The metadata extraction process

When a media file is uploaded to CollectiveAccess a sequence of processing steps are performed that result in the
originally uploaded media file and a series of derivatives included in the database. Once processing is complete,
extraction of embedded metadata is performed, if configured, on the originally uploaded media. Depending upon the
mapping specified for the uploaded media, either MediaInfo or ExifTool are run on the uploaded media file.

When MediaInfo is used, the command-line mediainfo command is used with options to output extracted metadata
as PBCore v2.0 XML. The command used is mediainfo --Output=PBCore2 <filename>, where <file-
name> is the path to a media file to analyze. You can use this command on the server command-line with selected files
to get an idea of the format and structure of the data to be mapped.

Typical MediaInfo PBCore XML output will resemble this example:

<?xml version="1.0" encoding="UTF-8"?>
<!-- Generated at 2020-04-20T19:43:25Z by MediaInfoLib - v19.09 -->
<pbcoreInstantiationDocument

xsi:schemaLocation="http://www.pbcore.org/PBCore/PBCoreNamespace.html https://raw.
→˓githubusercontent.com/WGBH/PBCore_2.1/master/pbcore-2.1.xsd"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns="http://www.pbcore.org/PBCore/PBCoreNamespace.html">
<instantiationIdentifier source="File Name">Self_Portrait_1969_sRGB.tif</

→˓instantiationIdentifier>
<instantiationDate dateType="file modification">2020-04-06T17:56:20Z</

→˓instantiationDate>
<instantiationDimensions unitsOfMeasure="dpi">800.000x800.000</

→˓instantiationDimensions>
<instantiationDigital>image/tiff</instantiationDigital>
<instantiationStandard>TIFF</instantiationStandard>
<instantiationLocation>Self_Portrait_1969_sRGB.tif</instantiationLocation>
<instantiationMediaType>Static Image</instantiationMediaType>
<instantiationFileSize unitsOfMeasure="byte">42993144</instantiationFileSize>
<instantiationTracks>1</instantiationTracks>
<instantiationEssenceTrack>

<essenceTrackType>Image</essenceTrackType>
<essenceTrackIdentifier source="StreamKindID (MediaInfo)">0</

→˓essenceTrackIdentifier>
<essenceTrackEncoding annotation="endianness:Big compression_mode:Lossless">

→˓Raw</essenceTrackEncoding>
<essenceTrackBitDepth>8</essenceTrackBitDepth>
<essenceTrackFrameSize>3200x4475</essenceTrackFrameSize>
<essenceTrackAnnotation annotationType="Title">"Steve McQueen / Self-

→˓Portrait, 1969 / Oil on canvas (in artist's frame) / 34 x 24 in. (86.3 x 60.9
→˓cm) / Studio #: / Studio binder: Paintings 1969-1970 / Date of photography: /
→˓Original photography: 4x5 Transparency"</essenceTrackAnnotation>

<essenceTrackAnnotation annotationType="ColorSpace">RGB</
→˓essenceTrackAnnotation>

</instantiationEssenceTrack>
<instantiationAnnotation annotationType="Image_Codec_List">Raw</

→˓instantiationAnnotation>
<instantiationAnnotation annotationType="Encoded_Application_CompanyName">EPSON</

→˓instantiationAnnotation>
<instantiationAnnotation annotationType="Encoded_Application_Name">Adobe

→˓Photoshop 21.0 (Macintosh)</instantiationAnnotation>
</pbcoreInstantiationDocument>

ExifTool is run with the command-line exiftool command and the -json (output in JSON format), -g1 (group
data under headings), -a (include all data) options. To simulate this on the server command-line use the command
exiftool -json -a -g1 <filename> where <filename> is the path to a media file to analyze.

292 Chapter 1. Contents

CollectiveAccess Documentation, Release 1.8

Typical ExifTool output with these options should resemble this example:

[{
"SourceFile": "/Users/ca/Desktop/images/Self_Portrait_1969.tif",
"ExifTool": {
"ExifToolVersion": 11.85

},
"System": {
"FileName": "Self_Portrait_1969.tif",
"Directory": "/Users/ca/Desktop/images",
"FileSize": "41 MB",
"FileModifyDate": "2020:04:06 13:56:02-04:00",
"FileAccessDate": "2020:04:06 13:56:41-04:00",
"FileInodeChangeDate": "2020:04:06 13:56:41-04:00",
"FilePermissions": "rw-r--r--"

},
"File": {
"FileType": "TIFF",
"FileTypeExtension": "tif",
"MIMEType": "image/tiff",
"ExifByteOrder": "Big-endian (Motorola, MM)",
"CurrentIPTCDigest": "bfdbbc3492d748bae59a045d52eedeb8"

},
"IFD0": {
"SubfileType": "Full-resolution Image",
"ImageWidth": 3200,
"ImageHeight": 4475,
"BitsPerSample": "8 8 8",
"Compression": "Uncompressed",
"PhotometricInterpretation": "RGB",
"ImageDescription": "Self-Portrait, 1969\nOil on canvas (in artist's frame)\n34 x

→˓24 in. (86.3 x 60.9 cm)\nStudio #:\nStudio binder: Paintings 1969-1970 \nDate of
→˓photography:\nOriginal photography: 4x5 Transparency",

"Make": "EPSON",
"Model": "Expression 12000XL",
"StripOffsets": 26316,
"Orientation": "Horizontal (normal)",
"SamplesPerPixel": 3,
"RowsPerStrip": 4475,
"StripByteCounts": 42960000,
"XResolution": 800,
"YResolution": 800,
"PlanarConfiguration": "Chunky",
"ResolutionUnit": "inches",
"Software": "Adobe Photoshop 21.0 (Macintosh)",
"ModifyDate": "2020:04:06 12:11:15",
"Copyright": "Permission to reproduce photography must be obtained from the Artist

→˓"
},
"XMP-x": {
"XMPToolkit": "Adobe XMP Core 5.6-c148 79.164036, 2019/08/13-01:06:57 "

},
"XMP-xmp": {
"CreatorTool": "Adobe Photoshop 21.0 (Macintosh)",
"MetadataDate": "2020:04:06 12:11:15-04:00",
"CreateDate": "2020:02:05 10:46:06-05:00",
"ModifyDate": "2020:04:06 12:11:15-04:00"

},

(continues on next page)

1.36. Importing media embedded metadata 293

CollectiveAccess Documentation, Release 1.8

(continued from previous page)

"XMP-xmpMM": {
"DocumentID": "adobe:docid:photoshop:da4cff7b-7f92-de48-9b5a-715bbdf53797",
"OriginalDocumentID": "4F5F926FB3F7A36F7B9C01E4FE4BDF17",
"InstanceID": "xmp.iid:d8d49b93-b505-47f1-ae50-1c6197730444",
"HistoryAction": ["saved","saved","saved","saved","saved","saved","saved"],
"HistoryInstanceID": ["xmp.iid:67850da4-0379-454a-a635-93c142bcbae3","xmp.

→˓iid:77751899-131d-4f7e-a84f-f104200b29ad","xmp.iid:5a1611bc-1e40-488b-b6cd-
→˓29a4dd54c2e8","xmp.iid:967f9e41-0541-4afb-9907-5a9f41452a94","xmp.iid:be011035-f7b0-
→˓49d9-a712-e25b503e07f4","xmp.iid:90d2ed31-ee25-4fd5-b2a4-0ad3a1ee1b92","xmp.
→˓iid:d8d49b93-b505-47f1-ae50-1c6197730444"],

"HistoryWhen": ["2020:02:05 11:27:06-05:00","2020:02:05 11:28:12-05:00",
→˓"2020:02:13 16:42:20-05:00","2020:02:13 16:53:13-05:00","2020:04:02 10:24:09-04:00",
→˓"2020:04:06 12:11:15-04:00","2020:04:06 12:11:15-04:00"],

"HistorySoftwareAgent": ["Adobe Photoshop Camera Raw 12.1","Adobe Photoshop
→˓Camera Raw 12.1 (Macintosh)","Adobe Photoshop 21.0 (Macintosh)","Adobe Photoshop 21.
→˓0 (Macintosh)","Adobe Bridge 2020 (Macintosh)","Adobe Photoshop 21.0 (Macintosh)",
→˓"Adobe Photoshop 21.0 (Macintosh)"],

"HistoryChanged": ["/metadata","/metadata","/","/","/metadata","/","/"]
},
"XMP-dc": {
"Format": "image/tiff",
"Description": "Self-Portrait, 1969\nOil on canvas (in artist's frame)\n34 x 24

→˓in. (86.3 x 60.9 cm)\nStudio #:\nStudio binder: Paintings 1969-1970 \nDate of
→˓photography:\nOriginal photography: 4x5 Transparency",

"Subject": ["Painting","Self-Portrait"],
"Title": "Self-Portrait, 1969",
"Rights": "Permission to reproduce photography must be obtained from the Artist"

},
"XMP-photoshop": {
"Credit": "© The Artist",
"Source": "The Studio",
"ColorMode": "RGB",
"ICCProfileName": "Adobe RGB (1998)",
"CaptionWriter": "Willie Mays",
"History": "2020-04-06T12:03:13-04:00\tFile Self_Portrait_1969.tif opened\n2020-

→˓04-06T12:11:15-04:00\tFile Self_Portrait_1969.tif saved\n"
},
"XMP-xmpRights": {
"Marked": true

},
"IPTC": {
"CodedCharacterSet": "UTF8",
"ApplicationRecordVersion": 4,
"Caption-Abstract": "Self-Portrait, 1969\rOil on canvas (in artist's frame)\r34 x

→˓24 in. (86.3 x 60.9 cm)\rStudio #:\rStudio binder: Paintings 1969-1970 \rDate of
→˓photography:\rOriginal photography: 4x5 Transparency",

"Writer-Editor": "Willie Mays",
"Credit": "© The Artist",
"Source": "The Studio",
"ObjectName": "Self-Portrait, 1969",
"Keywords": ["Painting","Self-Portrait"],
"CopyrightNotice": "Permission to reproduce photography must be obtained from the

→˓Artist"
},
"Photoshop": {
"IPTCDigest": "bfdbbc3492d748bae59a045d52eedeb8",
"XResolution": 800,

(continues on next page)

294 Chapter 1. Contents

CollectiveAccess Documentation, Release 1.8

(continued from previous page)

"DisplayedUnitsX": "inches",
"YResolution": 800,
"DisplayedUnitsY": "inches",
"PrintStyle": "Centered",
"PrintPosition": "0 0",
"PrintScale": 1,
"GlobalAngle": 30,
"GlobalAltitude": 30,
"CopyrightFlag": true,
"URL_List": [],
"SlicesGroupName": "Self_Portrait_1969",
"NumSlices": 1,
"PixelAspectRatio": 1,
"PhotoshopThumbnail": "(Binary data 3973 bytes, use -b option to extract)",
"HasRealMergedData": "Yes",
"WriterName": "Adobe Photoshop",
"ReaderName": "Adobe Photoshop 2020"

},
"ExifIFD": {
"ExifVersion": "0231",
"ColorSpace": "Uncalibrated",
"ExifImageWidth": 3200,
"ExifImageHeight": 4475

},
"ICC-header": {
"ProfileCMMType": "Adobe Systems Inc.",
"ProfileVersion": "2.1.0",
"ProfileClass": "Display Device Profile",
"ColorSpaceData": "RGB ",
"ProfileConnectionSpace": "XYZ ",
"ProfileDateTime": "2000:08:11 19:51:59",
"ProfileFileSignature": "acsp",
"PrimaryPlatform": "Apple Computer Inc.",
"CMMFlags": "Not Embedded, Independent",
"DeviceManufacturer": "none",
"DeviceModel": "",
"DeviceAttributes": "Reflective, Glossy, Positive, Color",
"RenderingIntent": "Perceptual",
"ConnectionSpaceIlluminant": "0.9642 1 0.82491",
"ProfileCreator": "Adobe Systems Inc.",
"ProfileID": 0

},
"ICC_Profile": {
"ProfileCopyright": "Copyright 2000 Adobe Systems Incorporated",
"ProfileDescription": "Adobe RGB (1998)",
"MediaWhitePoint": "0.95045 1 1.08905",
"MediaBlackPoint": "0 0 0",
"RedTRC": "(Binary data 14 bytes, use -b option to extract)",
"GreenTRC": "(Binary data 14 bytes, use -b option to extract)",
"BlueTRC": "(Binary data 14 bytes, use -b option to extract)",
"RedMatrixColumn": "0.60974 0.31111 0.01947",
"GreenMatrixColumn": "0.20528 0.62567 0.06087",
"BlueMatrixColumn": "0.14919 0.06322 0.74457"

},
"Composite": {
"ImageSize": "3200x4475",
"Megapixels": 14.3

(continues on next page)

1.36. Importing media embedded metadata 295

CollectiveAccess Documentation, Release 1.8

(continued from previous page)

}
}]

1.36.3 Creating mappings

Import of media embedded metadata is managed through the same import mapping system used for import of stand-
alone datasets. All standard options are available when performing an import of embedded metadata. Embedded
imports are always performed in the context of ca_object_representations records, and any relationships
generated will be relative to the object representation record housing the imported media.

MediaInfo

PBCore XML data generated by MediaInfo is passed verbatim to the data importer. The required mapping is iden-
tical in format to that used for import of stand-alone PBCore v2.0 XML documents. As with all XML-based for-
mats XPath is used reference to specific elements within the XML. Note that XPath expressions should omit the
pbcoreInstantiationDocument root tag. For example, to reference the essenceTrackType value in the
example above use /instantiationEssenceTrack/essenceTrackType.

Mappings for MediaInfo-based metadata extraction must include mediainfo in their inputFormats setting.

Sample MediaInfo mapping

ExifTool

JSON output generated by ExifTool is converted by CollectiveAccess into a pseudo XML file using group head-
ers (“IPTC”, “XMP-photoshop” and others in the example above) as top-level tags and sub-entries as second-level
tags. For example, to reference the XMP Dublin Core description value in the example above use /XMP-dc/
Description.

Mappings for ExifTool-based metadata extraction must include exif in their inputFormats setting.

Sample ExifTool mapping

Common EXIF fields and their importer source references:

296 Chapter 1. Contents

CollectiveAccess Documentation, Release 1.8

EXIF Group EXIF Field Importer source refer-
ence

Notes

IPTC Caption-Abstract /IPTC/Caption-Abstract
IPTC Writer-Editor /IPTC/Writer-Editor
IPTC Credit /IPTC/Credit
IPTC Source /IPTC/Source
IPTC ObjectName /IPTC/ObjectName
IPTC Keywords /IPTC/Keywords
IPTC CopyrightNotice /IPTC/CopyrightNotice
XMP-dc Format /XMP-dc/Format
XMP-dc Description /XMP-dc/Description
XMP-dc Subject /XMP-dc/Subject
XMP-dc Title /XMP-dc/Title
XMP-dc Rights /XMP-dc/Rights
ICC_Profile ProfileDescription /ICC_Profile/ProfileDescriptionName of color profile
File FileType /File/FileType
File MIMEType /File/MIMEType
IFD0 ImageWidth /IFD0/ImageWidth
IFD0 ImageHeight /IFD0ImageHeight
IFD0 Compression /IFD0/Compression Compression used
IFD0 Make /IFD0/Make Manufacturer of digitiztion device
IFD0 Model /IFD0/Model Model of digitization device
IFD0 Software /IFD0/Software Software used to generate file
IFD0 Orientation /IFD0/Orientation Orientation of image, as reported by

device

1.36.4 CollectiveAccess configuration

User interface and logging aspects of the import process can be configured using directives in the app.conf configura-
tion file.

Users can select the import mapping they wish to use at the time of upload in the editing and batch media importer
interfaces when allow_user_selection_of_embedded_metadata_extraction_mapping is set to a
non-zero value.

When allowing user selection of mappings, allow_user_embedded_metadata_extraction_mapping_null_option
can be set to include a “no import” option. Setting this option to zero effectively forces import of embedded metadata
in all cases.

If it often desirable to have CA automatically select import mappings based upon the format of the uploaded file.
The embedded_metadata_extraction_mapping_defaults setting can be used to map media file MIME
types to mappings. MIME types may be specific (Ex. image/tiff for TIFF format images) or cover entire classes using
wildcards (Ex. image/* for images of any type).

embedded_metadata_extraction_mapping_defaults = {
video/* = example_mediainfo_mapping,
image/* = example_exif_tool_mapping,
application/pdf = pdf_metadata_import

}

The values are the right side of the map must be valid data import mapping codes, as defined in the code setting of a
mapping worksheet.

How much information is logged when performing an embedded metadata import can be controlled using the

1.36. Importing media embedded metadata 297

CollectiveAccess Documentation, Release 1.8

embedded_metadata_extraction_mapping_log_level setting. Valid values are DEBUG, NOTICE,
INFO, WARN, ERR, CRIT and ALERT, where DEBUG logs the most (sometimes too much) information, and levels
beyond ERR log only the most critical errors. It is generally best to leave this setting on DEBUG when testing and use
NOTICE or INFO if DEBUG is providing too much information.

1.37 Export Mappings

1.37.1 Supported output formats

Currently: XML, MARC21, CSV

1.37.2 Creating a mapping

To create a mapping, first download the Excel-based export mapping template available here (File:Data Export Map-
ping template.xlsx). Once all of the mappings and settings have been entered into the template it can be loaded directly
into CollectiveAccess (see Running an export below). The mapping is automatically checked using format-specific
rules before it is added so if your mapping has any errors or ambiguities, the mapping loader will let you know.

Creating the mapping is a very dependent on the format you want to export. Specific notes and examples can be found
in the section about element values and formats.

1.37.3 Rule types

The first column of the main mapping spreadsheet is called “Rule type”. What you set here basically qualifies what
this row does. Most of the rows will end up being of the “Mapping” type but there are several options available:

Rule type Description
Mapping Maps a CollectiveAccess data source to a target column number, XML ele-

ment/attribute or MARC field.
Constant Allows you to set an element in the target format (a CSV column or an XML ele-

ment/attribute to a static/constant value. If this is set, the value is taken from the 6th
column in the mapping sheet (“Source”).

RepeatMappings Allows repeating a list of existing mappings in a different context. If this is set, the
comma-delimited list of mappings is taken from the 6th column (“Source”). See
Data_Exporter#Mapping repitition.

Setting Sets preferences for the mapping (see below).
Variable (Available for v1.5) Allows you, using all the available features of the exporter, to

assign a value to a user-defined name for later usage. See Data_Exporter#Variables.

1.37.4 Hierarchical mappings

Some export formats support hierarchical relationships between mapping items. For XML this is a very core concept.
To create a hierarchy, simply assign a number to a mapping in the 2nd column of the Mapping sheet and then reference
that number in other rows (i.e. for other items) in the 3rd row, which is typically named “Parent ID”. The second item
will then become a direct child if the first one. In theory, those hierarchies can be nested very deep but in practice the
format implementations may apply restrictions.

298 Chapter 1. Contents

File:Data

CollectiveAccess Documentation, Release 1.8

1.37.5 Source

The value for the 5th column in the mapping sheet can be any CollectiveAccess bundle specifier. See
API:Getting_Data#Bundle_specifiers for details. This usually specifies the actual data that is pulled into this item.
Can be set to arbitrary text for items with static content or be left empty for items without content (e.g. wrapping
elements in XML or empty columns in CSV).

Note that if the context for the current mapping is changed, there are a couple of special keys available for the source
column. For more information see the description for the “context” option in the table below.

1.37.6 Element values and general notes on specific formats

The 4th column of the mapping sheet is named ‘Element’. This is a very format-specific setting where you enter the
name of the element you want to put your field data in. See below for a description of the formats.

1.37.7 XML Element values

The XML format implementation allows valid XML element names as values for the “Element” column. If you want
to specify an XML attribute, prefix the name with an @. The attribute will then be appended to the hierarchy parent
(which can’t be another attribute). The mapping item hierarchy pretty much represents the XML tree that will be
constructed from it.

Say you have the following very simple part of a mapping sheet and you export a single object.

Rule type ID Parent
ID

Element Source Options

Mapping 1 object
Mapping 2 1 @idno ca_objects.idno
Mapping 3 1 title ca_objects.preferred_labels

What you end up with as export for a given objects is something like the following:

<object idno="00001">
<title>My very cool object</title>

</object>

1.37.8 MARC Element values

Let’s start off by saying that MARC is a very old and very specific format. Creating MARC mappings can be a bit
painful. Make yourself familiar with the format before you dive into the following description.

In MARC mappings, the Element value is either a control field or a data field definition. For control field definitions,
simply enter the field code (like ‘001’) here. For data field definitions, enter the field code, followed by a forward slash
and both indicator characters. For details on valid field codes and indicators, please refer to the MARC documentation.
For empty/unused indicators, use the pound sign (#). Valid examples are 001 300/## 490/1#

Mapping items with data field definitions also shouldn’t have any source definition or static data. The data resides
in subfields, which should be separate mapping items with a hierarchical relationship (via Parent ID) to the field
definition. For instance, you’d define an item for the data field “300/##”. Suppose it had the ID 1. This field (like
every data field) has a couple of subfields [1], namely a through g and 3, 6, 8 (leave out the $ character from the original
documentation). Now create separate mapping items for each subfield you need, pull in the CA data you want using
the ‘Source’ field in the mapping sheet and fill in the Parent ID “1”, the identifier of the data field. Here’s an example

1.37. Export Mappings 299

CollectiveAccess Documentation, Release 1.8

in table form (which may not make sense from a MARC standpoint but we’re only trying to explain the format here,
not the semantics of MARC fields):

Rule type ID Parent
ID

Element Source Options

Mapping 1 1 ca_objects.idno
Mapping 2 300/##
Mapping 3 2 b ca_objects.preferred_labels

An example export for a single object looks like this then. Note that we selected the ‘readable’ format for the MARC
exporter, more info on format-specific settings are below.

LDR
001 00001
300 ## _bMy very cool object

1.37.9 Variables

This feature allows you, using all the available features of the exporter, to assign a value to a user-defined identifier
for later usage. The value can be anything you can pull from the database. The ‘’‘identifier’‘’ should ‘’‘only contain
alphanumeric text, dashes and underscores’‘’. Otherwise the mapping spreadsheet will fail to load. For example: type,
my_variable, some-value, somethingCamelCase.

The identifier (essentially the name) that you assign to the variable goes into the element column. Since variable don’t
end up in the export, this column has no other use. Below is a simple example.

The main (and for the moment only) use for variables are conditional mappings. Say you have two objects, a document
and a photo. And say you have an attribute ‘secret_info’ that is valid for both object types but that you only want to
have in your export for photos. You could build two different mappings for these cases or you could use a variable to
assign the object type to a user-defined identifier and then use the skipIfExpression option for the mapping in question.

A good way to think of variables is that they are mappings that don’t end up in the actual export. They respect the
current context, the current place in the hierarchy, everything.

Rule type ID Parent
ID

Element Source Options

Variable type ca_objects.type_id
Mapping 1 object
Mapping 2 1 @idno ca_objects.idno
Mapping 3 1 secret ca_objects.top_secret{ “skipIfExpression” : “^type!~/49/” }

We use the “type” variable in the skipIfExpression setting for the top_secret mapping. For more info on this setting,
see the setting description below.

1.37.10 Settings

These are configuration options that apply to the whole exporter mapping.

300 Chapter 1. Contents

CollectiveAccess Documentation, Release 1.8

Setting Description Parameter notes Example
exporter_format Sets the format used for

this mapping.
Restricted list, at the moment ‘XML’,
‘MARC’ and ‘CSV’ are supported.

XML

code Alphanumeric code of the
mapping

Arbitrary, no special characters or spaces my_mapping

name Human readable name of
the mapping

Arbitrary text My mapping

table Sets the table for the ex-
ported data

Corresponds to CollectiveAccess Basic Ta-
bles

ca_objects

wrap_before If this exporter is used for
an item set export (as op-
posed to a single item),
the text set here will be
inserted before the first
item. This can for in-
stance be used to wrap a
repeating set of XML el-
ements in a single global
element. The text should
be valid for the current ex-
porter format.

Arbitrary string value <rdf:RDF
xmlns:dc=”http://purl.org/dc/elements/1.1/”
. . . >

wrap_after If this exporter is used for
an item set export (as op-
posed to a single item), the
text set here will be in-
serted after the last item.
This can for instance be
used to wrap a repeating
set of XML elements in
a single global element.
The text has to be valid for
the current exporter for-
mat.

Arbitrary string value </rdf:RDF>

wrap_before_recordSame as wrap_before
but only applies to single
item/record exports.

Arbitrary string value <mySingleRecordWrap
xml:id=”fooBar”>

wrap_after_recordSame as wrap_after but
only applies to single
item/record exports.

Arbitrary string value </mySingleRecordWrap>

typeRestrictions If set, this mapping will
only be available for these
types. Multiple types are
separated by commas or
semicolons. Note that this
doesn’t work very well
for batch exports because
search results or sets typi-
cally consist of records of
multiple types. The ex-
porter select dropdown al-
ways shows all exporters
for that table, but when
you actually run the ex-
port in batch mode, it will
filter according to the re-
striction, which can get a
little confusing when you
look at the result.

comma- or semi-colon separated list of valid
type codes for this table

image,document

MARC_outputFormatMARC supports a couple
of different output formats
for the same kinds of map-
ping. Set the format you
want to use here. Default
is ‘readable’. See [2] for
more details

readable’, ‘raw’ or ‘xml’. readable refers
to the typical more or less human-readable
table-like format used for MARC records.
raw is used to write MARC binary files for
data exchange. The 3rd option uses MAR-
CXML as output format.

xml

1.37. Export Mappings 301

CollectiveAccess Documentation, Release 1.8

1.37.11 Options

Each mapping item (i.e. a line in the mapping spreadsheet) can have its own settings as well. To set these settings, you
can fill out the 6th column of the mapping sheet, called ‘Options’. The options must be filled in in JavaScript Object
Notation. If you set this value and it’s not formatted properly, the mapping loading tool will throw an error. Here’s a
description of the available options:

302 Chapter 1. Contents

CollectiveAccess Documentation, Release 1.8

Options Description Parameter notes Example
default Value to use if data source

value is blank
Arbitrary text “No value”

delimiter Delimiter to used to con-
catenate repeating values

Usually a single character like a comma or
semi-colon

prefix Text to prepend to value
prior to export

Arbitrary text Dimensions are:

suffix Text to append to value
prior to export

Arbitrary text feet

template Format exported value
with provided template.
Template may include
caret (^) prefixed place-
holders that refer to data
source values.

See the [Bundle_Display_Templates] article
for details on the syntax

^height

maxLength Truncate to specified
length if value exceeds
that length

Integer 80

repeat_element_for_multiple_valuesSome source values may
select multiple values, for
instance for repeatable
metadata elements. If this
is the case and this option
is set, the current mapping
item is repeated for each
value instead of them
being put into a single
string using the delimiter
option

1 or 0. defaults to 0 1

filterByRegExp Allows filtering values
by regular expression.
Any value that does NOT
match this PCRE regular
expression is filtered and
not exported

Insert expression without delimiters. Has to
be valid expression.

[A-Za-z0-9]+

locale Locale code to use to
get the field values from
the database. If not set,
the system/user default is
used.

Valid locale code de_DE

context
This is used to switch the context for this mapping item (and all hierarchy children) to a different record (usually a set of records). A basic application of this feature is to create a kind of sub-export inside the mapping where you can pull in data from related items or hierarchical descendants. Once the context is switched, the ‘source’ values for this row and all children are relative to the new context, unless of course it is switched again (you can build cascades). This allows you, for instance, to list all works of the creator of a painting which you’re exporting. The context-switched mapping item is always repeated for each record selected by the context switch! See also the ‘restrictToTypes’, ‘restrictToRelationshipTypes’ and ‘checkAccess’ settings to further specify the Note that if the context is switched to a related table, there are a couple of special keys available for the ‘’‘source’‘’ column to fetch the type of the relationship between the item in the current context and the item where the context was last switched. These keys are: ‘’‘relationship_type_id’‘’, ‘’‘relationship_type_code’‘’ and ‘’‘relationship_typename’‘’.

It is also possible
to switch context
to an attribute of
the current record.
This helps properly
process repeat-
able containers as
encapsuled sub-
exports. If the
context is switched
to a container like
ca_entities.address,
all elements of the
container are avail-
able in the source
column for all child
mappings. They
are addressed by
only their code(e.g.
“city”). No table
prefix.

Either a related table name like
‘ca_entities’, a metadata element bun-
dle specifier (ca_entities.address) or one
of the literals ‘children’ or ‘parent’ for
hierarchy traversal.

ca_entities

restrictToTypes Restricts the context of the
mapping to only records
of the designated type.
Only valid when context
setting is set

list of valid type codes “restrictToTypes”:[“photograph”,
“other”, “mixed”,
“text”]

restrictToRelationshipTypesRestricts the context of the
mapping to only records
related with the desig-
nated relationship type.
Only valid when context
is set.

list of valid relationship type codes “restrictToRelationshipTypes”:[“creator”,
“depicts”]

restrictToList When exporting related
list items, this option re-
stricts the context of the
mapping to only list items
of the designated list.

list of valid type codes “restrictToList”:[“keywords”]

list An alias for the option
“restrictToList”

list of valid type codes “list”:[“keywords”]

checkAccess Restricts the context of the
mapping to only records
with one of the designated
access values. Only valid
when context is set.

List of valid ‘access’ values “checkAccess”: [1,
2]

omitIfEmpty Completely ignores this
mapping if the selector
doesn’t return any value.
This is primarily meant
for XML exports where
you don’t want to end up
with ugly empty XML
elements like <relatedOb-
jects></relatedObjects>.
Note: This works dif-
ferently from the Data
Importer Option “skip-
IfEmpty”!

Valid bundle specifier “omitIfEmpty”:
“ca_objects.description”

omitIfNotEmpty Omit this item and all
its children if this Collec-
tiveAccess bundle speci-
fier returns a non-empty
result. This is useful
if you want to specify
fallback-sections in your
export mapping that are
only used if certain data is
not available.

Valid bundle specifier “omitIfNotEmpty”:
“ca_objects.description”

omitIfNoChildrenOmit this item if no child
items will be contained
within it. This option
allows you to make the
appearance of a container
item contingent upon
the existance of content
within the container.
NOTE: This option is
available from version
1.7.9.

0 or 1 “omitIfNoChildren”:
“1”

convertCodesToDisplayTextIf set, id values refering to
foreign keys are returned
as preferred label text in
the current locale.

0 or 1 “convertCodesToDisplayText”:
1

convertCodesToIdnoIf set, id values refering to
foreign keys are returned
as idno. (Available from
version 1.6.1)

0 or 1 “convertCodesToIdno”:
1

returnIdno If set, idnos are returned
for List attribute values
instead of primary key
values. Should not be
combined with convert-
CodesToDisplayText, as
it overrides it and can
produce unwanted results.
Only applies to List at-
tribute values!

0 or 1 “returnIdno”: 1

skipIfExpression If the expression yields
true, skip the mapping
for the data. Note that
all user-set variables are
available under their iden-
tifiers.

arbitrary text { “skipIfExpres-
sion” : “^foo!~/49/”
}

start_as_iso8601 If you exporting a range
of dates, and wish for the
start and end dates to be
split and exported to sep-
arate elements, use this
setting to grab the “start”
date.

0 or 1 {
“start_as_iso8601” :
1 }

end_as_iso8601 If you exporting a range
of dates, and wish for the
start and end dates to be
split and exported to sep-
arate elements, use this
setting to grab the “end”
date.

0 or 1 { “end_as_iso8601”
: 1 }

timeOmit By default,
start_as_iso8601 and
end_as_iso8601 will pro-
duced the timestamp as
well as the date. To omit
the time, use timeOmit.

0 or 1 { “timeOmit”: 1 }

dontReturnValueIfOnSameDayAsStartThis setting will ensure
that the end_as_iso8601
will be skipped on single
dates (where there is no
end date).

0 or 1 { “dontReturn-
ValueIfOnSame-
DayAsStart” : 1
}

sort Sorts the values returned
for a context switch on
these fields. Only valid
when context is set to a re-
lated table. Must always
be a list.

List of valid field names for related table “sort” : [
“ca_entities.preferred_labels.surname”
]

stripTags Removes HTML and
XML tags from output.
(Available from version
1.7.9)

0 or 1 {“stripTags”:1}

1.37. Export Mappings 303

CollectiveAccess Documentation, Release 1.8

Below is a properly formatted example in JSON that uses some of these options:

{
"default" : "No value",
"delimiter" : ";",
"maxLength" : 80,
"filterByRegExp" : "[A-Z]+"

}

1.37.12 Processing order

In some cases the order in which the options and replacements (see next sub-section) are applied to each value can
make a significant difference so it’s important to note it here:

1) skipIfExpression (available for v1.5)

2) filterByRegExp

3) Replacements (see below)

a) If value is empty, respect ‘default’ setting

b) If value is not empty, use prefix and suffix

5) Truncate if result is longer than maxLength

1.37.13 Replacements

While looking at the exporter mapping template you might have noticed that there’s a second sheet called ‘Replace-
ments’ in there. This can be used to assign replacements to each mapping item. The first column references the ID
you set in the 2nd column of the mapping item table. The second column defines what is to be replaced. This again
should be a PCRE-compatible regular expression without delimiters. The 3rd column defines what value should be
inserted for the matched values. These conditions are applied to each matching value in the order they’ve been defined,
i.e. if you have multiple replacements for the same mapping item, the incoming value is first passed through the first
replacement, the result of this action is then passed in to the second replacement, and so on . . .

[Useful note for advanced users and PHP programmers]

The values are passed through preg_replace, the ‘pattern’ being the 2nd column value (plus delimiters) and the ‘re-
placement’ being the value from the 3rd column. This allows you to do pretty nifty stuff, for instance rewriting dates:

Search column: (w+) (d+), (d+) Replace column: $2 $1 $3 value: April 15, 2003 result: 15 April 2003

1.37.14 Mapping repitition

The ‘RepeatMappings’ rule type allows you to repeat a set list of mappings in a different context without actually
defining them again. This is, for instance, very useful when creating EAD exports of hierarchical data where the basic
structure is always the same (for archdesc, c01, c02, etc.) but the context changes. It’s basically a shortcut that saves a
lot of work in certain scenarios. Note that all hierarchy children of the listed items are repeated as well.

If you create a RepeatMappings rule, the mapping loader expects a comma-delimited list of references to the 2nd
column in the Mapping sheet. It also really only makes sense to create this type of rule if you change the context in
the same step. A simple example could look like this:

304 Chapter 1. Contents

CollectiveAccess Documentation, Release 1.8

Rule type ID Parent
ID

Element Source Options

Mapping 1 root
Mapping 2 1 label ca_objects.preferred_labels
Mapping 3 1 idno ca_objects.idno
Mapping 4 1 children
RepeatMappings 4 child 2,3 { “context” : “children” }

In this case, the ‘child’ element would be repeated for each hierarchy child of the exported item because of the context
switch and for each of those children, the exporter would add the label and idno elements.

1.37.15 Running an export

The export can be executed through caUtils. To see all utilities ask for help after cd-ing into support

cd /path_to_Providence/support bin/caUtils help

To get further details about the load-export-mapping utility:

bin/caUtils help load-export-mapping

To load the mapping:

bin/caUtils load-export-mapping –file=~/my_export_mapping.xlsx

Next you’ll be using the utility export-data. First, have a look at the help for the command to get familiar with the
available options.

bin/caUtils help export-data

Essentially there are 3 export modes:

1.37.16 1) Export a single record

Since the scope of a mapping is usually a single record, it’s easy to use a mapping to export a record by its identifier.
Suppose you have a ca_objects XML mapping with the code ‘my_mapping’. To use this to export the ca_objects
record with the primary key identifier (not the custom idno!) 550 to a new file ~/export.xml, you’d run this command:

bin/caUtils export-data -m my_mapping -i 550 -f ~/export.xml

1.37.17 2) Export a set of records found by custom search expression

In most real-world export projects you’ll need to export a set of records or even all your records into a single file.
The exporter utility allows this by letting you specify a search expression with the -s parameter that selects the set of
records used for export. The records are simply exported sequentially in the order returned by the search engine. This
sequence is wrapped in the wrap_before and wrap_after settings of the exporter, if set. If you want to export all your
records, simply search for “*”. This example exports all publicly accessible files to a file ~/export.xml:

bin/caUtils export-data -m my_mapping -s “access:1” -f ~/export.xml

1.37.18 3) Export a diverse set of records (“RDF mode”)

[For advanced users] The error handling in this portion of the code is very poor so you’re pretty much left on an island
if something goes wrong.

1.37. Export Mappings 305

CollectiveAccess Documentation, Release 1.8

Sometimes a limited export scope to for example ca_objects like in the previous example is not enough to meet the
target format requirements. Occasionally you may want to build a kind of ‘mixed’ export where records from multiple
database entities (objects, list items, places, . . .) are treated equally. We have found this requirement when trying to
use the exporter to generate an RDF graph, hence the name. The export framework originally wasn’t designed for
this case but the caUtils export-data command offers a way around that. The switch –rdf enables this so called “RDF
mode”. In this mode, you again use -f to specify the output file and you have to provide an additional configuration file
(see Configuration_File_Syntax) which tells the exporter about the records and corresponding mappings which will
be used for this export.

Here is a minimal example that uses all the available features:

wrap_before = "" wrap_after = ""

nodes = {
my_images = {

mapping = object_mapping,
restrictBySearch = "access:1",
related = {

concepts = {
restrictToRelationshipTypes = [depicts],
mapping = concept_mapping,

},
agents = {

restrictToTypes = [person],
mapping = agent_mapping,

},
}

},
}

While processing this configuration, the exporter essentially builds one big list of records and corresponding mappings
to export. There are no duplicates in this list, if object_id 23 is selected by two different node type definitions or by
multiple related definitions, it is still only exported once, using the mapping provided by the first definition.

Here is an example of how to run an RDF mode export:

bin/caUtils export-data --rdf -c ~/rdf_mode.conf ~/export.xml

1.37.19 RDF Mode configuration file options

Setting Description
wrap_before Text to prepend before the export.
wrap_after Text to append after the export.
nodes List of primary node type definitions to be used for this export

1.37.20 Node type definition options

Setting Description
mapping Mapping to be used for this type of node. Has to be an existing mapping code.
restrictbySearch Restrict exported records using a search expression
related List of related records also to be included in the global node set. You can use this

for example to make sure you only export list_items that are actually actively used
as vocabulary terms for objects, meaning you don’t have to create an extra node type
(which would potentially export all list items in your database) for this.

306 Chapter 1. Contents

CollectiveAccess Documentation, Release 1.8

1.37.21 ‘related’ options

Setting Description
mapping Mapping to be used for this type of related item. Has to be an existing mapping code.
restrictToRelationshipTypes Restrict selected related records by relationship types. Has to be a list or empty.
restrictToTypes Restrict selected related records by record types (e.g. entity type). Has to be a list or

empty.

1.37.22 Misc Setting and Options

Exporting values from Information Services (e.g Library of Congress, Getty)

If your CollectiveAccess configuration includes information services, such as Library Of Congress Subject Headings
or Getty’s Art and Architecture Thesaurus, you can export these in the exact same way as you would export other
kinds of metadata elements.

However, in order to comply with certain XML formats (like MODS of TEI) you may find that you need to extract the
terms’ URI and export these to an attribute while exporting the label name to an element.

To grab an information service term’s URI, you can simply append “.uri” or “.url” to the Source.

For example, if your Getty AAT element happens to be called “ca_objects.aat” and you wish to export the URI, simply
express the source as “ca_objects.aat.uri”. This will give you the URI while the simple “ca_objects.aat” will get you
the label name as before.

LC services work a little differently. For these, you must append to the source “.text” to get the label name and “.id”
to get the URI.

For example:

ca_objects.lcsh_terms.text will get you the label name of all lcsh terms on the record. ca_objects.
lcsh_terms.id will get you the URI for these terms.

1.38 OAI-PMH Provider

CollectiveAccess features an implementation of the OAI Protocol for Metadata Harvesting that serves database records
using virtually arbitrary XML-based formats. It supports all requests defined in the protocol and is made possible
through the Data_Exporter framework.

In order to make your data available via OAI-PMH you first have to create at least one XML mapping for the data
exporter. Data providers are required to provide at least Dublin Core so we suggest you start with that. You can,
however, provide any number of formats so long as you create the corresponding export mappings in CollectiveAccess.

For now we assume that you created a mapping with the code ‘oai_dc’ that describes how your data is mapped to
Dublin Core XML.

1.38.1 oai_provider.conf configuration

This is the core configuration file for this feature. If you want to provide only one the Dublin Core mapping you just
created, you’re pretty much good to go with the stock configuration. Just fill in the mapping code. The interesting
part of the configuration is under the ‘providers’ key. Here you can define an arbitrary number of endpoints where
harvesters can go and gather your data. You could, for instance, define 1 endpoint for your object/item records and

1.38. OAI-PMH Provider 307

http://www.openarchives.org/pmh/
http://www.openarchives.org/OAI/openarchivesprotocol.html#ProtocolMessages
https://en.wikipedia.org/wiki/Dublin_Core

CollectiveAccess Documentation, Release 1.8

one for your collections. Each of those is a full-fledged standalone OAI-PMH provider accessible via the following
URL pattern:

http://www.mydomain.org/service.php/OAI/<provider_key>

In the default config there’s only one provider with the code ‘dc’. It can be accessed like so:

http://www.mydomain.org/service.php/OAI/dc

Within each provider configuration you have a number of available settings. They are described in the table below.

Setting Description Example value
name Used as repositoryName for the response to the Identify verb. By

default it is imported from your setup.php.
My repository

admin_email Used as adminEmail for the response to the Identify verb. By de-
fault it is imported from your setup.php

me@mydomain.org

setFacet A browse.conf facet code used to divide the data set you’re provid-
ing into so called ‘sets’ (OAI terminology, not necessarily equiva-
lent to CollectiveAccess sets) and build the response to the ListSets
verb. By default associated collections are used.

collection_facet

query Search query that allows you to impose arbitrary restrictions on the
record set that is being provided. By default all records (‘*’) are
served.

ca_objects.idno:0001*

formats List of the metadata formats that are available for this provider. Fur-
ther information on the format definition is below.

see below

default_format Code of the format to use if the metadataPrefix argument is omitted,
i.e. if the harvester doesn’t specify which format he wants. You
should almost always serve basic Dublin Core in those cases.

oai_dc

identiferNamespace Namespace to use to build globally unique identifiers from your
local CollectiveAccess record ids. The identifiers look like this:
oai:<namespace>:<localID>

whirl-i-gig.com

dont_enforce_access_settingsif set, no access checks are performed 0
public_access_settings list of values for ‘access’ field in objects, entities, places, etc. that

allow public (unrestricted) viewing
[1]

privileged_access_settingslist of values for ‘access’ field in objects, entities, places, etc. that
allow privileged viewing (ie. user in on a privileged network as
defined below)

[1,2]

privileged_networks List of IP address to consider “privileged” (can see items where
access = 1 or 2) It is ok to use wildcards (“*”) for portions of the ad-
dress to create class C or B addresses, e.g. 192.168.1.5, 192.168.1.*
and 192.168.*.* are all valid and increasingly broad

[192.168.6.*]

dont_cache Determines if search or browse results used to built responses are
cached or not

1

show_deleted Determines if deleted records are included in list responses 0

1.38.2 Format Definition

The definition of a single format used by a provider configures the exporter mapping that should be used for this
format as well as some metadata about the format itself. The type of records served (objects, entities, . . .) is defined
by the exporter mapping. We strongly recommend not to mix mappings for different types in one provider. If you
want to provide, say, your objects and your collections, you should configure 2 separate providers to do this, otherwise
harvesters could get inconsistent results for the same identifiers.

308 Chapter 1. Contents

mailto:me@mydomain.org

CollectiveAccess Documentation, Release 1.8

The key of the format definition is the so called metadataPrefix. It is used to address these formats in OAI-PMH
requests (and also for the ‘default_format’ setting).

Setting Description Example value
mapping Code of the exporter mapping to use for this provided format oai_dc
schema Used only to describe this format for the ListMetadataFormats verb.

If you want schema definitions to appear in the protocol responses,
they should be part of your export mapping.

http://www.
openarchives.org/
OAI/2.0/oai_dc.xsd

metadataNamespace Used only to describe this format for the ListMetadataFormats verb.
If you want namespace definitions to appear in the responses, they
should be part of your export mapping.

http://www.
openarchives.
org/OAI/2.0/oai_dc/

An example configuration with only one format (metadataPrefix: oai_dc) served by the provider could look like this:

formats = {
oai_dc = {

mapping = ca_objects_oai_dc,
schema = http://www.openarchives.org/OAI/2.0/oai_dc.xsd,
metadataNamespace = http://www.openarchives.org/OAI/2.0/oai_dc/,

}
},

1.38.3 Testing your setup

To explore your collection using the OAI-PMH provider you just set up, you can for instance use the OAI Repository
Explorer maintained by the University of Cape Town. This tool obviously only works if your provider is accessible
online. You can also test the results by accessing provider via the following:

https://mydomain.com/service.php/OAI/dc?verb=ListRecords&metadataPrefix=oai_dc

Be sure to change out the metadataPrefix if it something other than oai_dc.

1.38.4 DPLA

Partner hubs of the Digital Public Library of America can provide metadata to the DPLA by setting up an OAI-PMH
provider servicing data in either DublinCore, MARC, or MODS. Consult with the DPLA for other supported formats,
or refer to the DPLA metadata specification crosswalk here.

1.39 External Export Framework

Note: This feature is available from CollectiveAccess version 1.7.9.

CollectiveAccess can interact with other external systems, including digital preservation and data backup platforms,
using the external export framework. The framework provides a pipeline for assembly, packaging and transmission of
CollectiveAccess-managed metadata and media to other applications. A variety of standard formats and protocols are
supported and may be mixed and matched to facilitate interoperation.

The framework operates at the record level, creating packages incorporating metadata, media (images, audio, video,
documents) and documentation such as checksums and use statements for individual objects, collections and other
record types. Record metadata may be generated in any format supported by the metadata export system, including

1.39. External Export Framework 309

http://www.openarchives.org/OAI/openarchivesprotocol.html#MetadataNamespaces
http://www.openarchives.org/OAI/2.0/oai_dc.xsd
http://www.openarchives.org/OAI/2.0/oai_dc.xsd
http://www.openarchives.org/OAI/2.0/oai_dc.xsd
http://www.openarchives.org/OAI/2.0/oai_dc/
http://www.openarchives.org/OAI/2.0/oai_dc/
http://www.openarchives.org/OAI/2.0/oai_dc/
http://re.cs.uct.ac.za/
http://re.cs.uct.ac.za/
https://dp.la/
https://docs.google.com/spreadsheets/d/1BzZvDOf4fgas3TD21xF40lu2pk2XW0k2pTGJKIt6438/edit#gid=1453046017

CollectiveAccess Documentation, Release 1.8

XML, tab, CSV and MARC, and can include metadata from related records. Multiple metadata exports may be
included in a single package, as well as any available versions of associated media.

Package formats include interchange standards such as BagIT and widely used container formats such as ZIP. Once
packages are created, the framework can transfer them to external systems using protocols such as Secure FTP.

The framework is designed to be extensible. It is possible to add support for additional package formats or data
transport protocols by creating software plugins.

1.39.1 Configuration

Behavior of the external export framework is controlled using targets. A target is a set of configuration defining what
data is to be exported, how that data is to be packaged, what criteria trigger creation of a package and where packages
are ultimately sent. You can configure as many targets as required, each with its own packaging, destinations and other
characteristics.

Targets are defined in the external_exports.conf configuration file. Each target has a unique code and a dictionary of
configuration values. Within the dictionary, a few top-level settings define basic parameters:

Setting Description Example value
label The name of the target, for display. CTDA MODS export
enabled Indicates if the target should be processed or not.

Set to 0 to disable the target or 1 to enable.
1

table Defines the table this target exports records from. ca_objects
restrictToTypes An optional list of one or more types for the export

table. If set, only records with the specified types
will be exported.

[books, documents]

checkAccess An optional list of one or more access values to
filter record on. If set, only records with the spec-
ified access values will be exported

[1] (export only records
with an access status of
“1”, which is typically
used to indicate the record
is public)

Detailed configuration is contained in three blocks:

• triggers defines the criteria that will trigger export of a record to this target.

• output defines the data to be exported

targets = {
mods_export_to_sftp_server = {

label = MODS export,
enabled = 1,

table = ca_objects,
checkAccess = [1],

triggers = {
lastModified = {

from_log_timestamp = 4/1/2020,
#from_log_id = 20000,
#query = cooking

}
},

output = {

(continues on next page)

310 Chapter 1. Contents

https://en.wikipedia.org/wiki/BagIt

CollectiveAccess Documentation, Release 1.8

(continued from previous page)

format = BagIT,
name = "EXPORT_^ca_objects.idno",
content = {

mods.xml = {
type = export,
exporter = mods_exporter_with_guid

},
. = {

type = file,
files = {

ca_object_representations.media.original = {
delimiter = .,
components = {^original_filename }

}
}

}
},
options = {

file_list_template = "^ca_objects.idno, ^filename, ^filesize_for_
→˓display, ^mimetype",

file_list_delimiter = ";"
}

},

destination = {
type = sFTP,
hostname = my-sftp-server@example.net,
user = my_user,
password = my_password,
path = "path/to/where/packages/are/uploaded"

}
}

}

1.39.2 Running an export

How to run an export here.

1.39.3 Extending the framework

Overview of plugin system here

1.40 User Access Control

1.41 Maintenance Functions

1.42 Command-line utilities

Info about caUtils to come

1.40. User Access Control 311

CollectiveAccess Documentation, Release 1.8

1.43 Settings

1.43.1 User interface settings

Relationship bundles

Relationship bundles provide a user interface for managing relationships between records. A range of functionality
is provided and can be controlled using the settings described below. Many settings are shared across all relationship
bundles, but some are only available for specific bundles.

Options available for all relationship bundles

TODO: VERIFY THIS IS COMPLETE

312 Chapter 1. Contents

CollectiveAccess Documentation, Release 1.8

Setting Description Valid values Version notes
restrict_to_relationship_typesComma separated list relationship type

codes to limit display of related records to.
One or more rela-
tionship type codes
defined for the rel-
evant relationship,
separated by com-
mas. Leave blank to
display all related
records, regardless
of relationship type.

restrict_to_types Comma separated list of related record types
to limit display of related records to.

One or more related
record type codes,
separated by com-
mas. Leave blank
to display all re-
lated records regard-
less of type.

dont_include_subtypes_in_type_restrictionControls whether type restrictions are au-
tomatically expanded to include sub-types.
Default default expansion is performed. Set
to a non-zero value to prevent expansion.

0,1

display_template A display template used to format for dis-
play metadata from the related representa-
tion. The template is evaluated relative to
the relationship (Eg. ca_objects_x_entities
for object-entity relationships)

allowedSorts Defines which bundles may be used to in-
teractively sort the list of related records.
Any valid record or relationship intrinsic or
metadata element may be specified. Sepa-
rate multiple bundles with commas. Values
specified here will be included in the sort
menu for the bundle.

disableSorts Controls whether sorting controls for related
records are displayed. Set to a non-zero
value to disable sorting. By default sorting
controls are displayed.

0,1

sort Bundle to use to sort the list of related
records on initial load. Omit to use the nat-
ural sort order a specified by the user via
drag-and-drop.

Any valid sortable
intrinsic or metadata
element bundle.

sortDirection The direction of the sort on initial load. Use
ASC for ascending and DESC or descend-
ing. Default is ASC.

ASC or DESC

showCount Controls whether the count of related
records is shown in the bundle title bar. De-
fault is 0 (no count). Set to a non-zero value
to display the count.

0,1 Available as of ver-
sion 1.7.9

dontShowDeleteButtonControls whether a delete button is show
for each related record. Default is 0 (show
delete button). Set to a non-zero value to re-
move delete buttons.

0,1

minRelationshipsPerRowMinimum number of related records. If set
to a non-zero value it will not be possible
to delete relationships once the minimum is
reached. If set to zero, or omitted, no minu-
mum is enforced. Default is 0.

Any integer >= 0

maxRelationshipsPerRowMaximum number of related records. If set
to a non-zero value it will not be possible
to add relationships once the maximum is
reached. If set to zero, or omitted, no maxi-
mum is enforced. Default is 0.

Any integer >= 0

documentation_url URL pointing to documentation for this
field. Leave blank if no documentation URL
exists.

1.43. Settings 313

CollectiveAccess Documentation, Release 1.8

Bundle: ca_object_representations

The ca_object_representations bundle provides the primary interface for associating uploaded media rep-
resentations with other records. For all CollectiveAccess versions functionality includes upload and preview of indi-
vidual media, limited editing and display of representation metadata, drag and drop ordering, download and more.

As of CollectiveAccess version 1.7.9 an expanded interface is available that offers batch upload of media files, greatly
expanded metadata editing and display and improved incremental loading and performance. Both the old “CLASSIC”
interface and the new expanded interface (“NEW_UI”) are supported in version 1.7.9. In future versions support for
the “CLASSIC” interface may be dropped.

314 Chapter 1. Contents

CollectiveAccess Documentation, Release 1.8

Setting Description Valid values Version notes
restrict_to_relationship_typesComma separated list relationship type

codes to limit display of related representa-
tions to. This setting is not relevant when
displaying representations directly related
to objects, as object-representation relation-
ships do not support relationship types.

One or more rela-
tionship type codes
defined for the
relevant relation-
ship, separated by
commas. Leave
blank to display all
related representa-
tions, regardless of
relationship type.

display_template A display template used to format for
display metadata from the related rep-
resentation. The template is evauated
relative to the representation relationship
(Eg. ca_objects_x_object_representations
for object-representation relationships)

As of version 1.7.9
additional template
tags are available,
providing a range of
preformatted infor-
mation for represen-
tation media. See
the “special place-
holders” section in
display template for
a list of tags.

uiStyle Enables the new (as of version 1.7.9) rep-
resentation bundle, which offers batch up-
load and in-bundle representation metadata
editing. Set to “CLASSIC” for the pre-1.7.9
bundle format, or “NEW_UI” for the new
bundle. The default is “CLASSIC”

CLASSIC or
NEW_UI

Available as of ver-
sion 1.7.9

showBundlesForEditingSelected intrinsics and metadata elements to
allow editing on. Separate multiple bundles
with commas. Bundles will be displayed
for editing in a fixed order regardless of the
order specified here. If a specific order of
bundles is needed in the editing form, use
the “showBundlesForEditingOrder” setting
to order the bundles listed here.

Any valid sortable
intrinsic or metadata
element bundle.

Available as of
version 1.7.9. For
NEW_UI bundle
format only.

showBundlesForEditingOrderList of editable intrinsics and metadata el-
ements in order they should be displayed,
separated by commas or returns. Only bun-
dles specified in the “showBundlesForEdit-
ing” setting may be referenced here.

Any valid sortable
intrinsic or meta-
data element bundle
that is specified
in “showBundles-
ForEditing”

Available as of
version 1.7.9. For
NEW_UI bundle
format only.

numPerPage Controls the number of representations ini-
tally loaded. Default is 10. Larger values
may degrade performance.

Any integer > 0 Available as of ver-
sion 1.7.9

effectiveDateDefault Default effective date value for newly added
representation relationships. Leave blank if
you do not wish to set an effective date.

Valid date expres-
sion. Use “now” to
stam with the cur-
rent date/time.

dontShowPreferredLabelDisables display of the representation pre-
ferred label in the CLASSIC bundle format
when set to a non-zero value.

0,1 For CLASSIC bun-
dle format only.

dontShowIdno Disables display of the representation iden-
tifier in the CLASSIC bundle format when
set to a non-zero value.

0,1 For CLASSIC bun-
dle format only.

dontShowStatus Disables display of the representation status
value in the CLASSIC bundle format when
set to a non-zero value.

0,1 For CLASSIC bun-
dle format only.

dontShowAccess Disables display of the representation ac-
cess value in the CLASSIC bundle format
when set to a non-zero value.

0,1 For CLASSIC bun-
dle format only.

dontShowTranscribe Disables display of the representation tran-
scribeable flag in the CLASSIC bundle for-
mat when set to a non-zero value.

0,1 For CLASSIC bun-
dle format only.

1.43. Settings 315

CollectiveAccess Documentation, Release 1.8

1.43.2 Metadata element settings

1.43.3 Display settings

1.44 Expressions

Expressions are statements evaluated by CollectiveAccess to a text, numeric or boolean (true/false) value. Expressions
can be used to conditionally trigger (or not) elements of an import mapping or display template, where the boolean
value returned determines what happens. Values may be generated through use of functions (described in more detail
below), comparisons and mathematical operations.

At its simplest an expression is a number or text quantity. These are examples of perfectly valid expressions:

• 5

• “Software is great”

You’ll notice in the examples above that numbers are just numbers while text must be enclosed in quotes (single or
double). Any quantity that is non-empty and non-zero will evaluate to “true” meaning that 5 = true while 0 = false. -1
is also true, as it is a non-zero value. Any strings besides “” (no text at all) is true, even ” ” (a single space).

While single values are valid expressions, they’re usually only useful when used in conjunction with operators. Op-
erators are symbols that take two operands (values), perform some operation, and return a new value based upon the
operands. There are several types of operators available in expressions:

1.44.1 Comparison operators

Comparison operators compare two operands and return true or false. The most common operator is “=”, which
returns true if the operands are exactly the same, false if they are not. For example, “wood” = “wood” is true whereas
“wood” = “cement” is not. In an import mapping it is possible to use the “=” operator to check if an input field is a
certain value.

Other comparison operators are:

• > greater than

• < less than

• >= greater than or equal

• <= less than or equal

• <> not equal

• != not equal (alternate form)

Greater than/less than operators only work with numeric values. Equal and not equal work with numbers or text.

Boolean comparison

As of version 1.7.9 values representing boolean true and false are available for use in comparisons. These allow you
to more easily test the return value of an expression of function using the bare, unquoted word “true” or “false”. For
example, this expression:

dateIsRange("1950's") = false

Would return true when dateIsRange() returns false, which is useful for importer actions and display templates where
specific behaviors are triggered by true expressions.

316 Chapter 1. Contents

CollectiveAccess Documentation, Release 1.8

1.44.2 Math operators

With expressions you can perform mathematical operations on numbers using +, -, * and /. These are addition,
subtraction, multiplication and division respectively. The + operator also works on text, and will merge two text values
together into a single run-on text value. For example:

4 + 5

will return the value 9

"Julia" + " plus " + "Allison"

will return the value “Julia plus Allison”

1.44.3 Logical operators

It is also possible to string together many expressions into a larger composite expression using the boolean logic
operators “AND” and “OR”. “AND” returns true if, and only if, both operands evaluates as true. “OR” returns true if,
and only if, at least one operand evaluates as true. For example:

(5 > 10) AND ("seth" = "seth")

is false because 5 is not greater than 10, and both expressions need to be true for the composite AND to be true

(5 > 10) OR ("seth" = "seth")

is true because “seth” = “seth” is true and only one needs to be true for logical OR to return true

Note: Prior to version 1.7.9 logical operators were required to be upper-case only. Both upper and lower-case
operators are now allowed.

1.44.4 Additional comparison operators

The comparison operators shown above are useful but limited. There are a couple of additional ones that are really
where the action is :-) They are:

1.44.5 The “IN” operator

“IN” lets you compare a value to a list of values. It returns true if ANY value in the list matches the value you are
comparing. For example:

"Seth" IN ["Julia", "Allison", "Sophie", "Maria", "Angie", "Seth"]

returns true while

"Joe" IN ["Julia", "Allison", "Sophie", "Maria", "Angie", "Seth"]

returns false.

There is also a related “NOT IN” operator which will return true if the value is not in the list.

1.44. Expressions 317

CollectiveAccess Documentation, Release 1.8

1.44.6 The =~ (regular expression) operator

You can compare a value against a regular expression using the =~ operator. Regular expressions are a very powerful
and very flexible pattern matching syntax. At its most basic a regular expression is a simple bit of text that is matched
anywhere in the value being compared. For example:

"Software is great" =~ /soft/

returns true.

Note that the regular expression is on the right side of the operator and is enclosed in “/” characters. This is a traditional
notation for regular expressions; they are enclosed in the forward slashes to set them off from normal text.

There is also a related !~ operator which will return true when the value does not match the regular expression.

1.44.7 Variables

This is all well and good, but the above examples are not terribly useful with hardcoded values in them. Where things
start getting truly useful is variables. Any source in an import record can be used as a variable by prefixing its name
with a “^” character. So if you were importing an Excel spreadsheet and wanted to apply rules when the word “allison”
appears anywhere in the value of column 4 you’d write

^4 =~ /allison/

Similarly, if you want to make sure that the value in the 10th column is equal to “metal” then you use the expression:

^10 = "metal"

If you wanted to make sure that both conditions applied to a record then you’d use:

(^4 =~ /allison/) AND (^10 = "metal")

If either would suffice you could use “OR” rather than “AND”

For XML input data the variable names are the XML paths – the exact same thing used in the source specification but
with a “^” tacked onto the front.

1.44.8 Functions

Functions are black-boxes that you put a number of values into in order to get a single value out of. The expression
system current allows the following functions:

Function Description Parameters Return
value

Example

abs Returns the absolute value of a number (eg.
changes negative numbers to positive ones);
takes a single value as input

ceil Rounds a fractional number up to the next
highest integer; takes a single value as input

floor rounds a fractional number down to the next
lower integer; takes a single value as input

int Forces a number to be an integer. If the
number has a decimal component it is dis-
carded; takes a single value as input

Continued on next page

318 Chapter 1. Contents

CollectiveAccess Documentation, Release 1.8

Table 6 – continued from previous page
Function Description Parameters Return

value
Example

max Returns the largest value of those passed to
it; takes any number of values as input

min Returns the smallest value of those passed
to it; takes any number of values as input

round Rounds the number to the closest integer;
takes a single value as input

random Returns a random number between zero and
the number provided as input ; takes a single
value as input

rand Synonym for random
current Evaluates to true if the supplied date ex-

pression encompasses the current server
date/time [available from version 1.5]

String <date expression>

future Evaluates to true if the supplied date expres-
sion ‘’ends” any time after the current server
date/time. The start date is not considered,
so the range may start before or after the
current date/time and still evaluate to true
[available from version 1.5]

wc Returns number of words (wc = “word
count”) in a supplied text value [available
from version 1.5]

String <text>

length Returns number of characters in a supplied
text value [available from version 1.5]

String <text>

sizeof Returns number of parameters. useful for
counting values. See example below [avail-
able from version 1.6]

count Synonym for sizeof
age Calculates age in years. accepts an arbitrary

number of parameters greater than 1. It’ll
take the earliest and latest dates in the pa-
rameter list as start and end of the time span,
so you don’t have to worry about the order.
If the result is a span of 0 years (e.g. because
only 1 date was passed), it’ll retry with the
current date added to the list. This is useful
to calculate something’s/someone’s current
age. [available from version 1.6]

Any number of date expressions

ageyears Alias for age [available from version 1.6] Any number of date expressions
agedays Same as age/ageyears, only for days. [avail-

able from version 1.6]
Any number of date expressions

avgdays Calculates the average length of the time
spans passed as parameters. Accepts an ar-
bitrary number of parameters (>1). [avail-
able from version 1.6]

Any number of date expressions

Continued on next page

1.44. Expressions 319

CollectiveAccess Documentation, Release 1.8

Table 6 – continued from previous page
Function Description Parameters Return

value
Example

formatdate Formats a valid date expression using PHP’s
[http://php.net/manual/en/function.date.php
date() function]. Formats dates as ISO
by default but accepts an optional second
parameter to specify the format that gets
passed to date(). See the PHP documenta-
tion for available options. [available from
version 1.6]

String <date expression>
[String <date format>]

formatgmdateFormats a valid date expression in UTC
using PHP’s [http://php.net/manual/en/
function.gmdate.php gmdate() function].
Formats dates as ISO by default but accepts
an optional second parameter to specify the
format that gets passed to gmdate(). See the
PHP documentation for available options.
[available from version 1.6]

String <date expression>
[String <date format>]

isvaliddate Returns true if parameter parses as a valid
date [available from version 1.7]

String <date expression>

date Parses a natural language date into a pair of
historic timestamp values, suitable for math-
ematical comparison.

String <date expression>

join Returns a list of values delimited by the first
argument. All other arguments are values.
Alias ‘’implode’‘. [available from version
1.7]

Any number of string values

implode Synonym for join
trim Trims leading and trailing whitespace from

a string. [available from version 1.7]
<string> text

avg Return average of parameter values. Any number of numeric values
sum Return sum of parameter values Any number of numeric values
replace Replace values using regular expression String <Perl compatible regu-

lar expression> String <replace-
ment value> String <subject
value>

idnoUseCountReturn number of items a value is used as an
identifier (idno) for a given table.

String <idno value> String <ta-
ble> (optional, if omitted de-
faults to “ca_objects”)

dateIsRangeReturn true if date is a range rather than a
single day, month or year. [available from
version 1.7.9]

String <date expression> boolean dateIsRange(1950’s)

To include the function-produced value in your expression just add the function name with a paren-enclosed list of
values following. For example:

random(10) > 5

returns true if the random number between 0 and 10 is greater than 5.

• ceil(5.2) returns 6

• floor(5.6) returns 5

320 Chapter 1. Contents

http://php.net/manual/en/function.date.php
http://php.net/manual/en/function.gmdate.php
http://php.net/manual/en/function.gmdate.php

CollectiveAccess Documentation, Release 1.8

• round(5.2) returns 5

• round(5.6) returns 6

• length(“hello”) returns 5

• sizeof(1,2,3,4) returns 4

• age(“23 June 1912”, “7 June 1954”) returns 41

• age(“7 June 1954”, “23 June 1912”) returns 41 (order doesn’t matter)

• age(“7 June 1954”, “9 May 1945”, “23 June 1912”) returns 41 (‘extra’ dates don’t matter)

• age(“28 January 1985”) returns something > 29; 30 if you run it before 28 January 2016

• agedays(“23 June 1912”, “7 June 1954”) returns 15324

• agedays(“1912/06/23”) returns something > 37653

• avgdays(“1912/06/23 - 1954/06/07”, “1985/01/28 - 2015/07/24”) returns 13229

• avgdays(“1945/01/02 - 1945/01/03”, “1985/01/28 - 1985/01/29”) returns 1

• formatdate(“1985/01/28”) returns 2015-08-05T14* 28* 31-04* 00. Note that this result can vary based on your
time zone setting in setup.php!

• formatgmdate(“1985/01/28”) returns 1985-01-28T05* 00* 00+00* 00. Note that this result can vary based on
your time zone setting in setup.php!

• formatgmdate(“1985/01/28”, “Y”) returns 1985

• trim(” this text has spaces at the end “) returns “this text has spaces at the end”

• join(“, “, “Smith”, “Bob”) returns “Smith, Bob”

1.44.9 Parentheses

You may have noticed that parens have been sprinkled through some of the examples. You can use matched parens
to group elements of an expression. This makes it easier to read and also ensures that operators are applied in the
desired sequence in complex expressions. The three things you need to know about parens are: (1) each paren’ed
sub-expression is evaluated as a single unit, before being combined with other sub-expressions (2) you must always
match each opening paren with a closing paren and (3) parens don’t hurt anything, but can improve readability of the
expression so you are encouraged to use them liberally.

1.45 Glossaries

1.45.1 API Endpoints & Methods

1.45.2 Bundles

• Intro

• User interface Settings

• Display Settings

• Search Form Settings

1.45. Glossaries 321

CollectiveAccess Documentation, Release 1.8

Intro

Bundles are elements that can be placed on UI screens, included in search forms or displays. They can be attributes
of a specific element set or database fields intrinsic to a specific item type. Bundles can be functional elements that
allow cataloguers to establish relationships between items, add and remove items from sets and manage an item’s
location in a larger hierarchy. Bundles are so named because they are essentially black-boxes that encapsulate various
functionality.

Below is a break down of the bundle classes and the properties that are particular to each type.

Bundle
type

Also known as Description Example

Basic bun-
dle

Administrative bun-
dle, Intrinsic bundle

Always present regardless of configuration. Single data
entry; does not repeat.

access

Rela-
tionship
bundle

Related table Bundles that create relationships between items. ca_objects

Label bun-
dles

Name or Title bundle Human-readable short descriptions used for display to
identify a record.

pre-
ferred_labels

Attribute
bundles

Metadata element Any field created by a user. ca_attribute_elementcode

Special
bundles

Bundles that allow a cataloger to manage an item’s loca-
tions in, for example, sets and hierarchies

hierar-
chy_location

User interface Settings

There are several settings that can be used to configure all bundles, regardless of type, when they are placed on a user
interface screen.

Set-
tings

Description Default Values

label Custom label text to use for this placement of this bundle.
add_label Custom text to use for the add button for the placement of this bun-

dle.
de-
scrip-
tion

Descriptive text to use for help for bundle. Will override descrip-
tive text set for underlying metadata element, if set. Make sure to
include a locale specification, i.e. <setting name=”description” lo-
cale=”en_US”>XXX</setting>

read-
only

If checked, field will not be editable. 0 (not read only) 0 or 1

ex-
pand_collapse_value

(Available for v1.5) Controls the expand/collapse behavior when
there is at least one value present. While technically available for
most bundles, the setting might have no effect for some of the “spe-
cial” bundles. They have extra settings, see below.

dont_force (default
behavior = save ex-
pand/collapse state
when the user changes
it)

dont_force,
col-
lapse,
expand

ex-
pand_collapse_no_value

(Available for v1.5) Controls the expand/collapse behavior when
there is no value present. While technically available for most bun-
dles, the setting might have no effect for some of the “special” bun-
dles. They have extra settings, see below.

dont_force (default
behavior = save ex-
pand/collapse state
when the user changes
it)

dont_force,
col-
lapse,
expand

However, there are type-specific settings as well, outlined below.

322 Chapter 1. Contents

CollectiveAccess Documentation, Release 1.8

Bundle
type

Set-
tings

Description Default Values

Special
(hierar-
chy_location
and hierar-
chy_navigation
only)

open_hierarchyIf checked hierarchy
browser will be open when
form loads.

1 (open) 0 or 1

Special
(hierar-
chy_location
and hierar-
chy_navigation
only)

auto_shrinkIf enabled hierarchy browser
will shrink to height of con-
tents. Version 1.5 and later.

1 (shrink) 0 or 1

Special
(hierar-
chy_location,
hierar-
chy_navigation
and
ca_objects_history
only)

ex-
pand_collapse

Controls the ex-
pand/collapse behavior
for this bundle.

dont_force (default behavior = save ex-
pand/collapse state when the user changes
it)

dont_force,
col-
lapse,
ex-
pand

Rela-
tionship
(ca_list_items
only)

re-
strict_to_lists

Restricts display to items
from the specified list(s).
Leave all unselected for no
restriction.

list
code

Rela-
tionship
(ca_list_items,
ca_storage_locations,
ca_places
only)

use-
Hierar-
chical-
Browser

If set a hierarchy browser
will be used to select the
related item rather than an
auto-completing text field.

0 0 or 1

Rela-
tionship
(ca_list_items,
ca_storage_locations,
ca_places
only)

hierar-
chical-
Browser-
Height

The height of the hierarchi-
cal browser displayed when
theuseHierarchicalBrowser
option is set.

200px A
pixel
di-
men-
sion
ending
with
‘px’
(eg.
500px)

Rela-
tionship
(ca_objects)

re-
strict-
ToTermsRe-
lated-
ToCol-
lection

Will restrict checklist to
those terms applied to re-
lated collections.

0 0 or 1

Rela-
tionship
(ca_objects)

re-
strict-
ToTermsOn-
Collec-
tion-
With-
Rela-
tion-
ship-
Type

Will restrict checklist to
terms related to collections
with the specified relation-
ship type. Leave all unse-
lected for no restriction.

type
code

Rela-
tionship
(ca_objects)

re-
strict-
ToTermsOn-
Collec-
tionUseRe-
lation-
ship-
Type

Specifies the relationship
used to relate collection-
restricted terms to this
object. (Required if
usingrestrictToTermsRelat-
edToCollection)

type
code

Relation-
ship

re-
strict_to_relationship_types

Restricts display to items re-
lated using the specified re-
lationship type(s). Leave all
unselected for no restriction.

type
code

Relation-
ship

re-
strict_to_types

Restricts display to items of
the specified type(s). Leave
all unselected for no restric-
tion.

type
code

Relation-
ship

dont_include_subtypes_in_type_restrictionNormally restricting to
type(s) automatically in-
cludes all sub-(child) types.
If this option is checked
then the lookup results
will include items with the
selected type(s) only

0 0 or 1

Relation-
ship

list_formatFormat of relationship list. bubbles bub-
bles or
list

Relation-
ship

dontShowDelete-
Button

If checked the delete rela-
tionship control will not be
provided.

0 0 or 1

Relation-
ship

min-
Rela-
tion-
shipsPer-
Row

Sets the minimum number
of relationships that must be
catalogued to save.

empty nu-
meric
value

Relation-
ship

maxRe-
lation-
shipsPer-
Row

Sets the maximum number
of relationships that must be
catalogued to save.

empty nu-
meric
value

Relation-
ship

dis-
play_template

Layout for relationship
when displayed in list (can
include HTML). Element
code tags prefixed with the
^ character can be used to
represent the value in the
template. For example:
^my_element_code.

^preferred_labels Uses
the-
bundle
dis-
play
tem-
plate
syntax

Relation-
ship

color-
FirstItem

If set first item in list will use
this color.

Relation-
ship

color-
LastItem

If set last item in list will use
this color.

Relation-
ship or
Attribute

sort Method used to sort related
items.

For attributes: use target element code for sort
without table or container path i.e. dates_value
NOT ca_objects.date.dates_value. To sort on
order created do not use the sort setting at all,
use only sortDirection. For relationships: use
the target element code for sort WITH full ta-
ble/container path. Use relation_id to set to or-
der created.

Relation-
ship or
Attribute

sortDi-
rection

Direction of sort, when not
in a user-specified order.

ASC ASC
or
DESC

Attribute
or Label

usewysi-
wyged-
itor

Check this option if you
want to use a word-
processor like editor with
this text field. If you expect
users to enter rich text
(italic, bold, underline) then
you might want to enable
this.

0 or 1

Attribute
or Label

width Width of the placement on
the UI

pixels
or
char-
acters

Attribute
or Label

height Height of the placement on
the UI

pixels
or
char-
acters

Relation-
ship or
Label

docu-
menta-
tion_url

A documentation link for the
bundle

URL

Special
(ca_objects_history)

full list
of set-
tings
here

The Object Use History bun-
dle has many settings. See
the included link for a full
list.

1.45. Glossaries 323

CollectiveAccess Documentation, Release 1.8

Here’s an example of how some of the settings above would look at the code-level in an xml profile:

<placement code="ca_film">
<bundle>ca_objects</bundle>

<settings>
<setting name="restrict_to_types">film</setting>
<setting name="label" locale="en_US">Related films</setting>
<setting name="add_label" locale="en_US">Add film</setting>

</settings>
</placement>

Display Settings

From /app/models/ca_bundle_displays.php

Global display settings:

Settings Description De-
fault

Val-
ues

show_empty_values If checked all values will be displayed, whether there is content for them
or not.

1 0 or 1

Bundle display settings for all types:

Settings Description Default Values
label Custom label text to use for this placement of this bundle. Text

Type-specific bundle display settings:

324 Chapter 1. Contents

CollectiveAccess Documentation, Release 1.8

Bundle
type

Settings Description Default Values

Label,
Attribute,
Relation-
ship

delimiter Text to place in-between repeating values.

Label,
Attribute

format Template used to format output.

Label,
Attribute

maxi-
mum_length

Maximum length, in characters, of displayed information. 100 Characters

Relation-
ship

makeEdi-
torLink

If set name of related item will be displayed as a link to
edit the item.

0 (not a
link)

0 or 1

Relation-
ship

re-
strict_to_relationship_types

Restricts display to items related using the specified rela-
tionship type(s). Leave all unselected for no restriction.

type code

Relation-
ship

re-
strict_to_types

Restricts display to items of the specified type(s). Leave all
unselected for no restriction.

type code

Relation-
ship

show_hierarchyIf checked the full hierarchical path will be shown. 1 (full
hier-
archy
shown)

0 or 1

Relation-
ship

re-
move_first_items

If set to a non-zero value, the specified number of items
at the top of the hierarchy will be omitted. For example,
if set to 2, the root and first child of the hierarchy will be
omitted.

0 Integers zero or
greater based
on hierarchy

Relation-
ship

hierar-
chy_order

Determines order in which hierarchy is displayed. ASC (top first)
DESC (bottom
first)

Attribute show_empty_valuesIf checked all values will be displayed, whether there is
content for them or not.

1 0 or 1

Attribute filter Expression to filter values with. Leave blank if you do not
wish to filter values.

^ca_objects.dimensions.Type
IN
(“with_frame”)

Search Form Settings

Regardless of type, bundles can take the follow setting when they are used in search forms.

Set-
tings

Description De-
fault

Values

label Custom label text to use for this placement of this
bundle.

Text

width Width, in pixels, of search form elements. 100px A pixel dimension ending with ‘px’ (eg.
500px)

1.45.3 Supported Media File Formats

• Supported Image Formats

• Supported Audio Formats

1.45. Glossaries 325

CollectiveAccess Documentation, Release 1.8

• Supported Video Formats

• Supported Document Formats

• Supported Multimedia Formats

Supported Image Formats

Format Media processing back-
end

Comments

JPEG GD, ImageMagick, IMag-
ick, GraphicsMagick,
Gmagick

GIF GD, ImageMagick, IMag-
ick, GraphicsMagick,
Gmagick

TIFF ImageMagick, IMagick,
GraphicsMagick, Gmagick

PNG GD, ImageMagick, IMag-
ick, GraphicsMagick,
Gmagick

TilePic GD, ImageMagick, IMag-
ick, GraphicsMagick,
Gmagick

Camera
RAW

ImageMagick, IMagick,
GraphicsMagick, Gmagick

Supports whatever manufacturer formats your installed version of
ImageMagick can handle

Photoshop
PSD

ImageMagick, IMagick,
GraphicsMagick, Gmagick

Derivatives for files with layer effects may not be rendered properly

JPEG-2000 ImageMagick, IMagick,
GraphicsMagick, Gmagick

DICOM ImageMagick, IMagick,
GraphicsMagick, Gmagick

DPX ImageMagick, IMagick,
GraphicsMagick, Gmagick

Pixel values in non-Tilepic derivatives are adjusted for optimal view-
ing on computer monitors.

OpenEXR ImageMagick, IMagick,
GraphicsMagick, Gmagick

More information on this format can be found here.

QTVR
(Quick-
Time VR)

QuicktimeVR JPEG-format thumbnails are extracted; straight-QTVR is kept as
“original” version. The QuicktimeVR plugin requires ffmpeg to be
installed.

Adobe
DNG

ImageMagick, IMagick,
GraphicsMagick, Gmagick

Supported Audio Formats

Format Media processing backend Comments
MP3 ffmpeg ffmpeg must be compiled with libLAME
AIFF ffmpeg
WAV ffmpeg Including Broadcast-WAVE
AAC ffmpeg Requires ffmpeg to be compiled with libfaac
Ogg Vorbis ffmpeg

326 Chapter 1. Contents

http://openexr.com/
http://www.audiocoding.com/faac.html

CollectiveAccess Documentation, Release 1.8

Supported Video Formats

Format Media processing backend Comments
MPEG-2 ffmpeg
MPEG-4 ffmpeg
QuickTime ffmpeg
WindowsMedia ffmpeg
FLV ffmpeg
Ogg Theora ffmpeg
AVI ffmpeg ffmpeg
xvid ffmpeg Planned

Supported Document Formats

For-
mat

Media
pro-
cessing
backend

Comments

PDF pdflib
(optional);
xPDF
(optional)

PDFLib-Lite and the PDFLib PECL module will improve processing performance; CA will
automatically use PDFLibLite if available. Otherwise the built-in (no installation necessary)
Zend_PDF library will be used. CA can only generate thumbnail page images for display if
Ghostscript is installed on your system. Can extract text from file for searchability if xPDF
is installed.

Mi-
crosoft
Word

AbiWord
(optional);
Libre
Office
(optional)

Both .doc (< 2007 file format) and .docx (XML-based format) are supported. Can extract text
from file for searchability if AbiWordis installed. Can generate page previews if LibreOffice
is installed.

Mi-
crosoft
Pow-
er-
point

Libre
Office
(optional)

As of version 1.2 XML-based format is supported. Can generate page previews if LibreOffice
is installed.

Mi-
crosoft
Ex-
cel

Libre
Office
(optional)

As of version 1.2 XML-based format is supported. Can generate page previews if LibreOffice
is installed.

Supported Multimedia Formats

Format Media processing backend Comments
STL mesh Standard Tesselation Language
PLY mesh Polygon File Format

1.45. Glossaries 327

http://www.pdflib.com/
http://pages.cs.wisc.edu/~ghost/
http://www.foolabs.com/xpdf/download.html
http://www.abisource.com/
https://en.wikipedia.org/wiki/STL_(file_format)
https://en.wikipedia.org/wiki/PLY_(file_format)

	Contents
	What is CollectiveAccess?
	System Requirements
	Backing up a CollectiveAccess installation
	Installation
	Setup.php
	Introduction to Data in CollectiveAccess
	Profiles
	Primary Tables and Intrinsic Fields
	Metadata Elements
	Relationships
	Interstitial Data
	Lists & Authorities
	User Interfaces
	User Interface Administration
	Data Dictionary
	Locales
	Labels
	Configuring Providence
	Configuration File Syntax
	Introduction to Search & Browse Types
	Search Syntax
	Indexing Options
	Search Engines
	Introduction to Media Management
	Media Mirroring
	Display Template Syntax
	PDF Output
	Generating Labels
	Tracking current object location
	Workflow-based location tracking
	Import Mappings
	Basic Data Import Tutorial
	Running an Import
	WorldCat
	Getty Vocabularies
	Importing media embedded metadata
	Export Mappings
	OAI-PMH Provider
	External Export Framework
	User Access Control
	Maintenance Functions
	Command-line utilities
	Settings
	Expressions
	Glossaries

